
Eventual Consistency and Deterministic Dataflow Programming
A Case Study of Integrating Derflow with the Riak Data Store

Christopher Meiklejohn
Basho Technologies, Inc.
cmeiklejohn@basho.com

Abstract
Even with the upcoming 2.0 release, queryability of Riak [1], an
open source distributed database from Basho Technologies, re-
mains an area for improvement. As of this release, Riak provides
three main mechanisms for executing queries across values stored
in the database: secondary indexing (2i), a MapReduce-like [5]
framework, and Yokozuna. However, all three have significant
drawbacks in terms of scalability and flexibility.

Secondary indexing offers the ability to tag objects as they are
written into the database with key-value pairs that can be used as
the basis for queries. However, the entire set of tags needs to be
specified every time the object is written, and tags are restricted to
range and equalities over strings and integers. In addition, there is
no mechanism for providing ad-hoc conjunctions or disjunctions.

Riak’s MapReduce-like framework, provided through an ap-
plication called riak pipe, provides the ability to do on-demand,
scatter-gather queries, but requires re-evaluation of the whole in-
put set even though there may be no changes for a phase, causing
increased cluster load.

Finally, Yokozuna provides an abstraction over distributed Solr,
but relies on a glue layer on top of Riak to interface with a JVM
running on each node, executing Solr queries across the cluster. As
of writing, it is still unclear how far this mechanism can be scaled,
and what penalty exists at scale when moving data between the Java
Virtual Machine and the Erlang runtime system.

Given these drawbacks, we have identified a series of desirable
properties for a future query mechanism for Riak. Specifically,
these are:

• The ability for a user to submit a computation to the Riak clus-
ter, and have it performed in a highly-available, fault-tolerant
manner across the entire cluster.

• An execution mechanism that can re-use and incrementally
update partial results, thereby alleviating the need to re-execute
the entire query across the cluster on repeated executions.

• A query mechanism that reduces harvest while maintaining
yield [3] during failure conditions.

Recently, there has been a series of research efforts surrounding
the use of bounded-join semilattices, a generalization of state-based
conflict-free replicated data types (CRDTs) [9], as data structures
in new programming models to provide deterministic execution in
distributed scenarios. Two examples of this are LVars [8], provid-
ing deterministic execution across multiple threads in Haskell, and
Bloom [4], which provides deterministic execution across multi-
ple instances of the Ruby virtual machine. In both these cases,
properties of the bounded-join semilattice, combined with mono-
tone functions, assist in ensuring determinism, specifically han-
dling cases of repeated updates and out-of-order updates.

More recently, as part of the SyncFree project in the European
Seventh Framework Programme of which Basho is a participant,
there has been further addition to these distributed deterministic
programming models named Derflow [10]. Derflow provides a
similar programming model, but is built using the Erlang-based,
Dynamo-inspired [6], distributed systems toolkit, riak core. [2]

We explore the process of developing the reference implemen-
tation of Derflow while simultaneously integrating the reference
implementation with Riak to provide a new prototype query mech-
anism. We expose the ability for users to submit deterministic com-
putations to the Riak data store, which are executed as values are
written, providing the user the ability to retrieve the computed re-
sults through a query API, similar to a materialized view mecha-
nism as exposed by other commercial databases, such as CouchDB.
[7]

Our integration exploits the following properties of Riak and
Derflow:

• Computations and their results are partitioned and replicated
along with their input data in the data store. This allows us to
provide highly-available results, which sacrifice harvest during
failure conditions. 1

• The partial results of computations can be combined determin-
istically, given the merge properties of state-based conflict-free
replicated data types.

The main contribution of this talk is an experience report from
the Basho engineering team that details the following:

• Assisting in the design and development of the Derflow library
on top of riak core.

• Adapting the research concept and reference implementation of
Derflow into Riak.

• Contributing changes made to Derflow for use inside of Riak
back to the reference implementation of Derflow.

Acknowledgments
This work was partially funded by the SyncFree project in the
European Seventh Framework Programme (FP7/2007-2013) under
Grant Agreement no 609551.

References
[1] Basho Technologies Inc. Riak source code repository. http://

github.com/basho/riak, .
[2] Basho Technologies Inc. Riak core source code repository. http:

//github.com/basho/riak_core, .

1 Specifically, as input values to the computation become unavailable, the
computations that resulted in those inputs also become unavailable.

1 2014/7/10



[3] E. A. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4):46–55, July 2001. ISSN 1089-7801. . URL http:
//dx.doi.org/10.1109/4236.939450.

[4] N. Conway, W. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. Technical Report
UCB/EECS-2012-167, EECS Department, University of California,
Berkeley, Jun 2012. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2012/EECS-2012-167.html.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008. ISSN 0001-
0782. . URL http://doi.acm.org/10.1145/1327452.1327492.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dy-
namo: Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. . URL http://doi.acm.org/10.1145/

1294261.1294281.
[7] B. Holt. Writing and Querying MapReduce Views in CouchDB.

O’Reilly Media, Inc., 1st edition, 2011. ISBN 1449303129,
9781449303129.

[8] L. Kuper and R. R. Newton. Lvars: Lattice-based data structures
for deterministic parallelism. In Proceedings of the 2Nd ACM SIG-
PLAN Workshop on Functional High-performance Computing, FHPC
’13, pages 71–84, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2381-9. . URL http://doi.acm.org/10.1145/2502323.
2502326.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A com-
prehensive study of Convergent and Commutative Replicated Data
Types. Rapport de recherche RR-7506, INRIA, Jan. 2011. URL
http://hal.inria.fr/inria-00555588.

[10] SyncFree. Derflow source code repository. http://github.com/
syncfree/derflow.

2 2014/7/10


