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Abstract
We propose a new “generic” abstraction for Erlang/OTP that aids in
the implementation of dataflow programming languages and mod-
els on the Erlang VM. This abstraction simplifies the implemen-
tation of “processing elements” in dataflow languages by provid-
ing a simple callback interface in the style of the gen server and
gen fsm abstractions. We motivate the use of this new abstraction
by examining the implementation of a distributed dataflow pro-
gramming variant called Lasp.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Dis-
tributed data structures

Keywords Dataflow Programming, Erlang, Concurrent Program-
ming

1. Introduction
The dream of dataflow programming [18, 19] is to simplify the act
of writing declarative applications that can easily be parallelisable
but do not introduce any accidental nondeterminism. Not only does
dataflow programming alleviate the need for the developer to rea-
son about the difficulties in concurrent programming: shared mem-
ory, thread-safety, reentrancy, and mutexes; dataflow programming
provides a declarative syntax focused around data and control flow.
By design, dataflow programs lend themselves well to analysis and
optimization, preventing the developer from having to explicitly
handle parallelism in a safe and correct manner.

While the power of Erlang/OTP is in its highly concurrent,
shared-nothing actor system, this only increases the potential con-
currency in the system making it difficult to prevent the introduc-
tion of accidental nondeterminism in computations. Erlang pro-
vides a solution for this problem with the Open Telecom Platform
(OTP) “generic” abstractions.1 These abstractions aim to simplify

1 When we refer to the Erlang/OTP “generic” abstractions we are referring
to the set of behaviours provided: gen server, gen fsm, gen event and
supervisor.
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concurrent programming: developers author code that adheres to a
specific “behaviour”2 and these abstractions then provide a com-
mon way to supervise, manage, and reason about processing con-
current messages to a single actor.

We propose a new Erlang/OTP “generic” abstraction for dataflow
programming on the Erlang VM called gen flow. This abstraction
allows for the arbitrary composition of stateful actors into larger
dataflow computations. This abstraction is sufficiently generic to
aid in the implementation of an arbitrary dataflow language in
Erlang/OTP: we motivate the use of gen flow through the im-
plementation of a deterministic distributed dataflow variant called
Lasp. [14, 15]

This paper contains the following contributions:

• gen flow abstraction: We propose gen flow, a new abstrac-
tion in the style of the “generic” abstractions provided by Er-
lang/OTP for building dataflow “processing elements.”

• Lasp integration: We motivate the use of this new abstraction
in building the Erlang-based, Lasp programmming model for
distributed computing.

2. The gen flow Abstraction
We first discuss an example of how the gen flow abstraction can
be used to build a dataflow application and then discuss its imple-
mentation.

2.1 Overview
We propose gen flow, a new abstraction for representing “pro-
cessing elements” in dataflow programming. This abstraction is
presented in Erlang/OTP as a behaviour module with a well de-
fined interface and set of callback functions, similar to the existing
gen server and gen fsm abstractions provided by Erlang/OTP.

Consider the example in Figure 1. In this example, our process-
ing graph contains three data nodes: two input sets, and one output
set, and one function that is computing the intersection of the two
sets. When either of the input sets change independently, the output
set should be modified to reflect the change in the input.

The goal of this abstraction is to enable the trivial composition
of dataflow components to build larger dataflow applications on
the Erlang VM. Figure 2 provides the Erlang code to implement
the design in Figure 1. The abstraction focuses around two major
components: a function that will be responsible for performing the
arbitrary computation given some inputs, and a list of anonymous
functions that are used to derive the value of the inputs.

2 Behaviours are essentially interfaces specifying callback functions that a
module must implement.
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{1,2,3}

{3,4,5}

Intersection {3}

Figure 1: Dataflow example of computing the intersection of
two sets. As the input sets change independently, the output
is updated to reflect the change.

1 -module(gen_flow_example).
2 -behaviour(gen_flow).
3

4 -export([start_link/1]).
5 -export([init/1, read/1, process/2]).
6

7 -record(state, {pid}).
8

9 start_link(Args) ->
10 gen_flow:start_link(?MODULE, Args).
11

12 init([Pid]) ->
13 {ok, #state{pid=Pid}}.
14

15 read(State) ->
16 ReadFuns = [
17 fun(_) -> sets:from_list([1,2,3]) end,
18 fun(_) -> sets:from_list([3,4,5]) end
19 ],
20 {ok, ReadFuns, State}.
21

22 process(Args, #state{pid=Pid}=State) ->
23 case Args of
24 [undefined, _] ->
25 ok;
26 [_, undefined] ->
27 ok;
28 [X, Y] ->
29 Set = sets:intersection(X, Y),
30 Pid ! {ok, sets:to_list(Set)},
31 ok
32 end,
33 {ok, State}.

Figure 2: Example use of the gen flow behaviour. This mod-
ule is initialized with a process identifier in the init function,
spawns two functions to read the inputs to the process func-
tion, via the read function. The process function sends a
message to the pid once both ReadFuns have returned an ini-
tial value.

2.2 Behaviour
The gen flow behaviour requires three callback functions (as de-
picted in Figure 2):

• Module:init/1: Initializes and returns state.
• Module:read/1: Function defining how to issue requests

to read inputs; takes the current state and returns a list of

ReadFuns along with an updated state. ReadFuns should be
arity 1 functions that take the previously read, or cached, value.

• Module:process/2: Function defining how to process a re-
quest; takes the current state and an argument list of the values
read, and returns the new state.

In our example, Module:init/1 is used to initialize state local
to the process: this state should be used in the same fashion that
the local state is used by gen server and gen fsm. Here, the local
state is used to track the process identifier that should receive the
result of the dataflow computation. Module:init/1 is triggered
once at the start of the process.

Module:read/1 is responsible for returning a list of ReadFuns:
these functions are responsible for retrieving the current state of the
input value. In our example, we have these functions return imme-
diately with a value of the input. However, in a pratical application,
these functions would most likely talk to another process, such as
a gen server or gen fsm, to retrieve the current state of another
dataflow element.

Module:process/2 is called every time one of the input values
becomes available. This function is called with the current local
state and a list of arguments that are derived from the input values
returned from Module:read/1. In our example, once we have one
value for both inputs, we compute a set intersection and send the
result via Erlang message passing.

To summarize, each instance of gen flow spawns a tail-
recursive process that performs the following steps:

1. Launches a process for each argument in the argument list
that executes that argument’s ReadFun. This is returned by
the Module:read/1 function. This process then waits for a
response from the ReadFun and replies back to the coordinator
the result of the value. Each of these processes are linked to the
coordinator process, so if any of them die, the entire process
chain is terminated and restarted by the supervisor.

2. As soon as the coordinator receives the first response, it updates
a local cache of read values for each argument in the argument
list.

3. The coordinator executes the Module:process/2 function
with the latest value for each argument in the argument list
from the cache. In the event that one of the argument values is
not available yet, a bottom value is used; in Erlang, the atom
undefined is used as the bottom value.

4. Inside Module:process/2, the user chooses how to propagate
values forward. In our example, we used normal Erlang mes-
sage passing.

Figure 3 diagrams one iteration of this process. Requests are
initially made, from gen flow, to read the current value of the
inputs; once the values are known and sent back to the gen flow
process, the result of the function is evaluated; finally, the result is
written to some output.

This model of computation is similar to how push-based func-
tional reactive programming languages (FRP) [20] operate. In these
systems, discrete changes to data items, either referred to as events
or the more general concept of signals [7], notify any “process-
ing elements” of changes to their value which triggers changes to
propagate through the graph.3

Specifally in push-based FRP, the topology is static and events
are pushed through the graph as signals change. We can imagine the
gen flow ReadFuns as establishing a just-in-time topology: they

3 We purposely avoid the discussion of behaviors in FRP, given our system
focuses on Erlang’s basic data structures, none of which observe continuous
changes in value.
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Figure 3: One iteration of the gen flow abstraction. State is
first read from inputs, computed locally, and sent to outputs.
In this example, we use the gen server abstraction for stor-
age of state.

essentially ask the inputs to notify the coordinator in the event of
a value change.

2.3 Reading from Inputs
When reading from input values, the gen flow process spawns a
set of linked processes to perform each read. These processes are
linked to the gen flow process, to ensure if any of them happen
to fail, the entire process is crashed (and restarted, if supervised.)
Additionally, each request is designated with its position in the
argument list, to ensure that when responses arrive, gen flow
knows how to properly map the response from the read operation
to the correct argument. We see the implementation of this in
gen flow below.

1 lists:foreach(fun(X) ->
2 ReadFun = lists:nth(X, ReadFuns),
3 CachedValue = orddict:fetch(X, DefaultedCache),
4 spawn_link(fun() ->
5 Value = ReadFun(CachedValue),
6 Self ! {ok, X, Value}
7 end)
8 end,
9 lists:seq(1, length(ReadFuns))).

For each argument to the function, a process is spawned to
execute the arguments ReadFun given the previously read value
taken from the local cache.

2.4 Cache
Additionally, given that the Module:process/2 function might re-
sult in the composition of the arguments, if only one input, of many,
happen to change, we need to be able to recompute the function
without having to retrieve a value we have already observed for the
other inputs. To facilitate this, a local cache is kept at the gen flow
process and updated as the value of inputs change. This cache is
maintained using an orddict local to the gen flow process. We
see the implementation of gen flow where it performs the update
of this cache and executes Module:process/2 with the most re-
cent values below.

1 receive
2 {ok, X, V} ->
3 Cache = orddict:store(X, V, Cache0),
4 RealizedCache = [Value || {_, Value}
5 <- orddict:to_list(Cache)],
6 {ok, State} = Module:process(RealizedCache,
7 State0)
8 end.

2.5 Usage
We envision that gen flow can be combined with the existing
“generic” abstractions provided by Erlang/OTP to build large,
declarative, concurrent dataflow applications in Erlang/OTP.

Both the Erlang/OTP abstractions gen server and gen fsm
have shown to be very powerful in practice for the management
of state: gen server representing a “generic” server process that
receives and responds to messages from clients and gen fsm repre-
senting a finite state machine that transitions based on the messages
it receives.

Figure 3 outlines an example of how we imagine these facilities
can be combined together. In this example, an instance of gen flow
is used to built a dataflow composition between state stored in two
gen server instances.

3. Lasp
We now motivate the use of gen flow using Lasp.

3.1 Overview
Lasp is a distributed, fault-tolerant, dataflow programming model,
with a prototypical implementation provided as a library for use
in Erlang/OTP. At its core, Lasp uses distributed, convergent data
structures, formalized by Shapiro et al. as Conflict-Free Replicated
Data Types (CRDTs) [17], as the primary data abstraction for
the developer. Lasp allows users to compose these data structures
into larger applications that also observe the same properties that
individual CRDTs do.

3.2 Conflict-free Replicated Data Types
Conflict-free Replicated Data Types (CRDTs) are data structures
designed for use in replicated, distributed computations. These data
types come in a variety of flavors: maps, sets, counters, regis-
ters, flags, and provide a programming interface that is similar to
their sequential counterparts. These data types are designed to cap-
ture concurrency properly: for example, guaranteeing deterministic
convergence after concurrent additions of the same element at two
different replicas of a replicated set.

One variant of these data structures is formalized in terms of
bounded join-semilattices. Regardless of the type of mutation per-
formed on these data structures and whether that function results in
a change that is externally non-monotonic, state is always mono-
tonically increasing and two states are always joinable via a binary
operation that computes a supremum, or least-upper-bound. To pro-
vide an example, adding to a set is always monotonic, but removing
an element from a set is non-monotonic. CRDT-based sets, such as
the Observed-Remove Set (OR-Set)4 used in our example, model
non-monotonic operations, such as the removal of an item from a
set, in a monotonic manner. To properly capture concurrent oper-
ations that occur at different replicas of the same objet, individ-
ual operations, as well as the actors that generate those operations,
must be uniquely identified in the state.

The combination of monotonically advancing state, in addition
to ensuring that replicas can converge via a deterministic merge op-
eration, provides a strong convergence property: with a determinis-
tic replica-to-replica communication protocol that guarantees that
all updates are eventually seen by all replicas, multiple replicas of
the same object are guaranteed to deterministically converge to the
same value. Shapiro et al. have formalized this property as Strong
Eventual Consistency (SEC) in [17].

To demonstrate this property, we look at three examples. In
each of these examples, a circle represents an operation at a given

4 The riak dt orset used in our examples is a purely functional imple-
mentation of the Observed-Remove Set (OR-Set) in Erlang.
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replica and a dotted line represents a message sharing that state
with another replica, where it is merged in with its current state.

RA

RB

1

3

2

?

?

set(1) set(2)

set(3)

Figure 4: Example of divergence due to concurrent opera-
tions on replicas of the same object. In this case, it is unclear
which update should win when replicas eventually communi-
cate with each other.
Figure 4 diagrams an example of a distributed register. In this

example, concurrent operations happen at each replica resulting in
a question of how to handle the merge operation when performing
replica-to-replica communication. In this example, it is up to the
developer to decide how to resolve a concurrent update.

RA

RB

1

3

2

3

3

set(1) set(2)

set(3)

max(2,3)

max(2,3)

Figure 5: Example of resolving concurrent operations with a
type of state-based CRDT based on a natural number lattice
where the join operation computes max.
Figure 5 diagrams a simple state-based CRDT for a max value

register, which extends our example in Figure 4. This data structure
supports concurrent operations at each replica. In this example,
concurrent operations occur where each replica sets the value to
a different value (2 vs. 3). However, the CRDT ensures that the
objects converge to the correct value: in this case, the max function,
here used as the merge, is deterministic and monotonic.

RA

RB

RC

{1}

(1, {a}, {})

{1}

(1, {b}, {})

{}

(1, {b}, {b})

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

add(1)

add(1) remove(1)

Figure 6: Example of resolving concurrent operations with
an Observed-Remove Set (OR-Set). In this example, concur-
rent operations are represented via unique identifiers at each
replica.
Finally, Figure 6 provides an example of the Observed-Remove

Set (OR-Set) CRDT, a set that supports the arbitrary addition and
removal of the same element repeatedly. In this set, state at each
replica is represented as a set of triples, (v, a, r), where v represents

the value, a is a set of unique identifiers for each addition, and r is
a subset of a for each addition that has been removed. When each
addition to the set is performed, the replica performing the addition
generates a unique identifier for that operation; when a removal is
done, the unique identifiers in the addition set are unioned into the
remove set. Presence in a set for a given value is determined on
whether the remove set r is a proper subset of a.

This allows the set to properly capture addition and removal
operations in a monotonic fashion, supporting the removal and re-
addition of the same element multiple times. One caveat does apply,
however: when removing an element, removals remove all of the
“observed” additions, so under concurrent additions and removals,
the set biases towards additions. This is a result of attempting to
provide a distributed data structure that has a sequential API. The
OR-Set is just one type of CRDT that can model externally non-
monotonic behaviour as monotonic growth of internal state.

Lasp is a programming model that uses CRDTs as the primary
data abstraction. Lasp allows programmers to build applications
using CRDTs while ensuring that the composition of the CRDTs
also observed the same strong convergence properties (SEC) as
the individual objects do. Lasp provides this by ensuring that the
monotonic state of each object maintains a homomorphism with
the program state.

3.3 API
Lasp provides five core operations over CRDTs:

• declare(t): Declare a variable of type t.5

• bind(x, v): Assign value v to variable x. If the current value of
x is w, this assigns the join of v and w to x.

• update(x, op, a): Apply op to x identified by constant a. op is
a data structure that performs an operation that is known to t.

• read(x, v): Monotonic read operation; this operation does not
return until the value of x is greater than or equal to v at which
time the operation returns the current value of x.

• strict read(x, v): Same as read(x, v) except that it waits until
the value of x is strictly greater than v.

Lasp provides functional programming primitives for transforming
CRDT sets:

• map(x, f, y): Apply function f over x into y.
• filter(x, p, y): Apply filter predicate p over x into y.
• fold(x, op, y): Fold values from x into y using operation op.

Lasp provides set-theoretic functions for composing CRDT sets:

• product(x, y, z): Compute product of x and y into z.
• union(x, y, z): Compute union of x and y into z.
• intersection(x, y, z): Compute intersection of x and y into z.

Figure 7 provides the code for a simple Lasp application. In
this application, two sets (S1 and S2) are initially created. The first
set (S1) is updated to contain three elements, and then the values
of the first set (S1) are composed into the second set (S2) via a
higher-order map operation. This application is visually depicted
in Figure 8.

Each of the functional programming primitives and set-theoretic
functions are modeled as Lasp processes: as the values of the input
CRDTs to these functions change, the value of the output CRDT
resulting from applying the function also changes. Lasp processes

5 Given the Erlang programming library does not have a rich type system, it
is required to declare CRDTs with an explicit type at initialization time.
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1 %% Create initial set.
2 {ok, S1} = lasp:declare(riak_dt_orset),
3

4 %% Add elements to initial set and update.
5 {ok, _} = lasp:update(S1, {add_all, [1,2,3]}, a),
6

7 %% Create second set.
8 {ok, S2} = lasp:declare(riak_dt_orset),
9

10 %% Apply map operation between S1 and S2.
11 {ok, _} = lasp:map(S1, fun(X) -> X * 2 end, S2).

Figure 7: Example Lasp application that defines two sets and
maps the value from one into the other. We ignore the return
values of the functions, given the brevity of the example.

{1,2,3} Map {2,4,6}

Figure 8: Dataflow graph representing the flow of informa-
tion described by Figure 7.

are an instance of the gen flow abstraction. This will be discussed
in Section 3.5.

3.4 Distribution
Before discussing Lasp processes, it is important to discuss the
implementation of Lasp’s distributed runtime.6

By default, Lasp provides a centralized runtime that is used for
taking single instances of CRDTs on a local machine and compos-
ing them into larger applications as discussed in Section 3.3.

In order for Lasp to support highly-available and fault-tolerant
distributed computations, Lasp provides a distributed runtime for
the execution of Lasp applications. The distributed runtime for
Lasp ensures that variables are replicated across a cluster of nodes
and operations are performed against a majority quorum of these
replicas; this ensures that Lasp applications can tolerate a number
of failures while still making progress. The CRDTs that Lasp uses
as the primary data abstraction provide safety: even under failures
and message re-orderings or duplication, computations will deter-
ministically converge to the correct result once all messages are
delivered.

If we return to Figure 8, it is important to realize that all objects
in this graph are replicated: there are three copies of the input, three
copies of the output, and three copies of the computation running
in a distributed cluster at the same time. Additionally, each node
in this graph may or may not be running on the same node in the
cluster. This is visually depicted in Figure 9.

In Figure 9, it is also important to realize that some replicas may
temporarily lag behind, or contain earlier values, given failures in
the network. We rely on majority quorums to ensure that we can
tolerate failures, in addition to an anti-entropy protocol to ensure
that all replicas eventually receive all messages. Under failure con-
ditions, Lasp operations, like map, may need to talk to a replica
that contains earlier state.

6 The implementation of Lasp’s distributed runtime is out of scope for
this paper. However, the reader is referred to our previous work [4] for a
discussion on building a distributed deterministic dataflow variant on top of
the Erlang-based, Riak Core [12] distributed systems framework.

{1,2,3} Map {2,4,6}

{}

{1,2,3}

Map

Map

{}

{2,4,6}

Figure 9: Replicated execution of Figure 8. In this example,
since majority quorums are used to perform update opera-
tions, some replicas may lag behind until receiving state from
another replica due to failures in the network. In the event of
a failure, functional operations like the map may need to talk
to a replica that contains earlier state.

3.5 Execution
As discussed in Section 3.3, all of Lasp’s functional programming
primitives and set-theoretic functions are implemented in terms of
Lasp processes. Lasp processes are recursive processes that wait
for changes in any of their inputs, compute a function over those
inputs, and produce and output based on the functions execution.
Lasp processes are implemented in terms of gen flow.

Lasp’s runtime can operate in two modes: centralized and dis-
tributed. The distributed runtime is the default for Lasp: variables
are replicated across a cluster of nodes. The centralized runtime
is provided for testing the semantics of Lasp independently of the
distribution layer.

In the centralized runtime, Lasp’s variables are stored locally in
either a LevelDB instance [5] or in an ETS (Erlang Term Storage)
table. The centralized runtime is used for the execution of our
QuickCheck [6] model which verifies that the semantics are correct.
Additionally, the centralized runtime can be used as the basis for
another distribution layer.

In the distributed runtime, Lasp’s variables are distributed
across a cluster of nodes. Each node, because of Lasp’s imple-
mentation as a Riak Core application, uses a single Erlang process
for managing access to the variables at that node. In Riak Core,
this process is referred to as a instance of the riak core vnode
behaviour; this behaviour is nothing more than a wrapped gen fsm
behaviour with some additional operations focused around distri-
bution of the state and how to route requests in the cluster.

In both of these cases, the ability to provide specific ReadFuns
to gen flow, as discussed in Section 2.2, has proven very valuable.
Let us look at two examples:

Centralized Execution When testing the transformation of state
with our QuickCheck model, we want to avoid routing requests
through the distribution layer. The primary reasons for this are
twofold: distribution adds latency to each operation, and distribu-
tion makes it harder to reason about when messages may be deliv-
ered. In this model, at compile time, we use an Erlang macro to
override the ReadFun of our “processing elements” to operate lo-
cally on an ETS table and return immediately. This allows for faster
execution and the ability to test language semantics separately from
the distributed runtime.
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Distributed Execution In the distributed execution, we have two
concerns that do not appear in the centralized execution. First, repli-
cas may become unavailable and stale replicas may be contacted, as
depicted in Figure 9. In this case, we want to ensure that the func-
tions we provide as ReadFuns only read forward: Lasp provides a
read operation that only returns if the objects state is monotonically
greater than a previously observed state; this is commonly referred
to as a session guarantee in distributed systems literature. Finally,
in the event that replicas may exist on remote nodes, the ReadFuns
should contain information on how to route the request based on its
location.

3.6 Example
Figure 10 shows Lasp’s use of gen flow. In this example, the Lasp
function and its inputs are passed in through the gen flow initial-
ization function and stored in local state. The ReadFuns supplied
use the Lasp monotonic read operation: we ensure that given the
previous value observed from the cache, we always read forward
in causal time. This prevents the observance of earlier values in the
event of failures.

4. Evaluation
We have found that having a generic abstraction for dataflow pro-
gramming has allowed us to greatly simplify the implementation of
three dataflow variants: Derflow [4], DerflowL [13], and Lasp [14].

Our previous work on Derflow provides a distributed, determin-
istic, single-assignment dataflow programming model for Erlang
that was later extended to operate over bounded join-semilattices
with DerflowL. Both of these models are direct precursors to Lasp
and during the implementation of Lasp we were able to greatly
simplify the dataflow “processing elements” by using the generic
abstraction presented in this paper. This greatly reduced the com-
plexity and code duplication of the implementation of Lasp; for
example, the implementation of an operation that applies identity
from one input to an output was reduced from 455 LOC to 128
LOC. Similar results exist for the other operations in Lasp. Addi-
tionally, using gen flow enabled us to test the implementation of
the CRDT transformation independently of the distribution layer,
which was not possible with Derflow and DerflowL.

5. Related Work
In the following section, we identify related work.

5.1 Kahn Process Networks
Kahn process networks (KPNs) [11] present a general model of
parallel computation where processes are used to compose data
that arrives on input channels into output channels. KPNs are both
deterministic and monotonic and are modeled around processes
that never terminate.

The gen flow abstraction is both influenced by, and can be used
to build applications in the style of, KPNs. Supervised instances of
gen flow can be used to model a computing process in a KPN;
each of these instances of gen flow never terminates unless in-
structed to by the application or terminated as a result of a fault in
the system. Similar to the binding of the formal parameters at the
call site where processes in a KPN are instantiated, functions for
reading inputs and producing outputs with gen flow can be pro-
vided at runtime or compile time, as seen in Figure 10.

5.2 Functional Reactive Programming
We acknowledge the relationship with Functional Reactive Pro-
gramming [9, 20], but focus on libraries providing dataflow abstrac-
tions that can be combined with idiomatic programming in the host

1 -module(lasp_process).
2 -behaviour(gen_flow).
3 -export([start_link/1]).
4 -export([init/1, read/1, process/2]).
5 -record(state, {read_funs, function}).
6

7 start_link(Args) ->
8 gen_flow:start_link(?MODULE, Args).
9

10 %% @doc Initialize state.
11 init([ReadFuns, Function]) ->
12 {ok, #state{read_funs=ReadFuns,
13 function=Function}}.
14

15 %% @doc Return list of read functions.
16 read(#state{read_funs=ReadFuns0}=State) ->
17 ReadFuns = [gen_read_fun(Id, ReadFun) ||
18 {Id, ReadFun} <- ReadFuns0],
19 {ok, ReadFuns, State}.
20

21 %% @doc Computation to execute when inputs change.
22 process(Args, #state{function=Function}=State) ->
23 case lists:any(fun(X) -> X =:= undefined end,
24 Args) of
25 true ->
26 ok;
27 false ->
28 erlang:apply(Function, Args)
29 end,
30 {ok, State}.
31

32 %% @doc Generate ReadFun.
33 gen_read_fun(Id, ReadFun) ->
34 fun(Value0) ->
35 Value = case Value0 of
36 undefined ->
37 undefined;
38 {_, _, V} ->
39 V
40 end,
41 {ok, Value1} = ReadFun(Id, {strict, Value}),
42 Value1
43 end.

Figure 10: Lasp’s use of gen flow. In this example, inputs
and the Lasp function are passed as arguments to gen flow
and stored in local state. The ReadFuns supplied take the pre-
viously observed value from the cache and perform a mono-
tonic read: this ensures we only ever read forward in causal
time.

language instead of the traditional approach with domain specific
languages.

5.3 FlowPools
FlowPools [16] provide a lock-free, deterministic, concurrent
dataflow abstraction for the Scala programming language. Flow-
Pools are essentially a lock-free collection abstraction that support
a concurrent append operation and a set of combinators and higher-
order operations. FlowPools are designed for multi-threaded com-
putation, but not distributed computation.

FlowPools have a similar abstraction to gen flow, but are fo-
cused around connecting collections together using combinators.
FlowPools allow lock-free append operations to be performed to
add elements to the collection and on these collections support two
types of functional transformations: foreach and aggregate. As
elements are added, the foreach operation asynchronously exe-
cutes and applies a transformation to a given collection: to guar-
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antee determinism when functions provided to the foreach may
contain side-effects, FlowPools ensure that the function supplied
to foreach is only called once for each element in the collection.
aggregate is similar to a fold in functional programming: to en-
sure determinism a collection must be “sealed” before completing
the fold operation across the collection.

5.4 Javelin
Javelin [1] is a Clojure library for performing spreadsheet-like, cell-
based dataflow programming. Javelin lets you declare “cells”: a
“cell” is given an arbitrary S-expression with arguments of other
“cell”s. As the value of the source “cell”s change, the S-expression
is re-evaluated with the current value of the inputs.

Javelin is unique in that it leverages Clojure’s IWatchable in-
terface: types that implement IWatchable execute a list of func-
tions, stored in the object’s metadata, whenever the object’s value
changes. Our solution uses Erlang behaviours, given that Erlang
does not have a way to extend the type system in a similar fashion.

5.5 Luke and Riak Pipe
Riak Pipe [10] and its predecessor, Luke [2] are both Erlang li-
braries for performing “pipeline processing” developed by Basho
Technologies. Both of these libraries focus around creating acyclic
processing graphs and provide a similar behaviour interface.

Both of these libraries focus on fixed topologies; the system
can not create a new node in the graph once the topology has
been instantiated and processing has began. This is a conscious
design decision; these frameworks were originally designed for
MapReduce [8] style processing in Riak Core [12] based systems
where a “pipeline” is established to process a finite set of data
with a set group of “phases”, or “processing elements.” By design,
if either of the “phases” happen to fail, the entire “pipeline” is
collapsed and an error returned to the caller.

Riak Pipe and Luke also rely on Erlang message passing to de-
liver output results to the next stage of processing. Riak Pipe syn-
chronizes on the mailbox size, through a series of acknowledge-
ments from the receiver, to support a backpressure mechanism to
prevent overloading slow “phases”. This is similar to the design
outlined by Welsh et al. in their work on SEDA. [21]

We believe that the gen flow abstraction is generic enough to
support the implementation of Riak Pipe and Luke. We plan to
explore an implementation of Riak Pipe that uses gen flow.

6. Conclusion
We have presented a new “generic” abstraction for Erlang/OTP to
support the implementation of dataflow programming languages
called gen flow. We have motivated the use of this new abstraction
through the implementation of a distributed, deterministic dataflow
programming model called Lasp. We have demonstrated that use of
this new abstraction has helped reduce code duplication and made
it easier to reason about computations in dataflow programming in
Erlang/OTP, as well as provided a way to integrate dataflow “pro-
cessing elements” with the existing Erlang/OTP “generic” abstrac-
tions.

A. Source Code Availability
Lasp and gen flow are available on GitHub under the Apache 2.0
License at http://github.com/lasp-lang/lasp.
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