
Verifying Interfaces Between Container-Based Components
Or... A Type System By Any Other Name

Christopher S. Meiklejohn
Université catholique de Louvain

Instituto Superior Técnico

Zeeshan Lakhani
Northeastern University

Peter Alvaro
UC Santa Cruz

Heather Miller
Northeastern University

École Polytechnique Fédérale de Lausanne

Abstract

Container-based programming has become the lingua
franca for building distributed applications. More than
ever before, application developers not only have to rea-
son about the behavior of containerized components, but
also the composition of these components that are in-
creasingly presented to the developer as prepackaged,
“black box” solutions. As a result, there is an increasing
need for ways to ensure that composition preserves in-
dividual component invariants. In this work, we present
a methodology for ensuring correctness of compositions
for containers based on existing programming language
research, namely research in the field of type systems.
We motivate our solution examining two use cases, both
leveraging existing public cloud and edge infrastructure
solutions and industry use cases.

1 Introduction

Modern distributed applications position the container
as the fundamental unit of computation, giving applica-
tion developers the ability to focus on higher-level design
patterns instead of the low level details in code. This
is evidenced by the growing popularity of microservice
architectures, i.e., architectures in which applications
are constructed through the composition of container-
ized software components [3]. Furthermore, commer-
cial cloud providers incentivize application developers to
deploy and compose “black box” container-based com-
ponents on their platform by providing registry market-
places like Docker Hub, container deployment systems
like Google’s Container Engine, and “serverless” infras-
tructures like Amazon’s Lambda. Not only are these
techniques pervasive in cloud computing, but state-of-
the-art infrastructures for edge computing, such as Ama-
zon Lambda@Edge, also promote this design philosophy
by deploying the same or equivalent containerized com-
ponents to the edge. Therefore, the programmers of to-

day progressively have to reason about the correct com-
position of existing off-the-shelf solutions.

Containers are no longer being treated simply as a de-
ployment vehicle, but instead as objects in a distributed
and orchestrated object-oriented programming environ-
ment [3]. Container-driven development is successful
today because it allows isolated teams of developers to
independently iterate on components of a larger appli-
cation as long as interactions at the boundary between
components is preserved. Even with invariants playing a
crucial role, containerized systems are increasingly made
up of heterogeneous and diverse communication proto-
cols, programming languages, application frameworks,
and subsystems working in concert. To tackle this dis-
parity, developers working on containers typically rely
on providing and consuming application programming
interfaces (APIs) across containers, supplying different
functionality as a guide on how to properly compose
them. However well documented these interfaces are,
they are usually solely specified via implementation and
not mechanically checked. Therefore, the onus of cor-
rectly understanding these interfaces, and ensuring that
their composition is correct, is placed on the application
developer.

To address these problems, we take a cue from type
theory and propose the use of universal polymorphism
in interface specification. We present two use cases that
motivate the two types of universal polymorphism identi-
fied by Cardelli and Wegner [4], subtype (inclusion) and
parametric polymorphism, respectively.

2 Motivating Example: Apache Kafka

Our first example examines a data loss bug, discov-
ered by Kingsbury [8] and formalized by Alvaro et
al. [1] where the Apache Kafka fault-tolerant, replicated
queue system, interacting with the Apache Zookeeper
distributed configuration service, fails to provide fault-
tolerance because of the composition of the system

through a single, underspecified interface that does not
account for network failures.

2.1 Background

The Apache Zookeeper system is a fault-tolerant, dis-
tributed key-value store that is commonly used as a dis-
tributed configuration service. Zookeeper exposes this
key-value store through a filesystem-like API. When
used for cluster membership, each node in the cluster
connects to Zookeeper and writes what is referred to
an ephemeral node — an object that will be present as
long as the node remains connected to Zookeeper. Thus,
the set of ephemeral nodes designates a view of the cur-
rent cluster membership — nodes that are connected to
Zookeeper.

Apache Kafka is a fault-tolerant, replicated queue sys-
tem, typically configured by Apache Zookeeper. Kafka
uses membership information provided by Zookeeper for
establishing the replica set used for writes against the
queue. Kafka selects one of the nodes from the mem-
bership set as the leader and uses primary-backup repli-
cation by writing to the leader, waiting for the follow-
ers to acknowledge; before acknowledging the write to
the user. Composition appears trivial: as soon as mem-
bership changes, Kafka’s replication system is notified
of the updated membership and incorporates the latest
membership and leader for data storage of items in the
queue.

For example, consider three Kafka nodes {A,B,C} and
a single Zookeeper node Z. In this example, a single
network partition that isolates nodes {A,Z} from {B,C}
causes the Zookeeper system to notify A that the cluster
membership and leader are itself as it is no longer receiv-
ing heartbeats from nodes B and C. When node A accepts
a write, a response is returned to the user after only stor-
ing the value at A, ensuring that a crash failure of A will
result in data loss. In this example, it is important to note
that both systems guaranteed local invariants: Zookeeper
provides a view of all non-crashed nodes; Kafka does not
acknowledge writes until writes are acknowledged by the
entire replica set.

The data loss problem occurs because the composition
of Zookeeper and Kafka does not encode a Kafka appli-
cation invariant: for the system to remain fault-tolerant
to f faults, the write should not be accepted unless the
membership contains f +1 members under the primary-
backup replication scheme. Therefore, Kafka should not
accept membership updates where membership is com-
posed of a single member if the system is to remain fault-
tolerant to a single fault.

2.2 Contemporary Solutions
The example composition problem presented between
Zookeeper and Kafka is a problem of underspecification
on the side of the Kakfa API. Zookeeper provides a gen-
eral interface, one that is used by Kafka for getting a list
of non-failed nodes. However, Kafka requires that to re-
main tolerant to f failures, the membership set that reads
from Zookeeper must contain f + 1 members — an in-
variant that is implicit.

Today, one typical way that this problem might be ad-
dressed is via documentation. The Kafka documentation
could provide information about precisely what require-
ments its membership interface needs to remain fault-
tolerant. Then, the application developer could write
a dynamic layer to interpose between Zookeeper and
Kafka, thus ensuring that either (a.) the membership pro-
vided to Kafka is at least f + 1 members, or (b.) in the
case there is only a single replica in the membership set,
coerce the set into returning the empty set, causing Kafka
to refuse writes until f +1 members were available.

However, this solution is both ad hoc and error prone.
For instance, if Kafka was to change its internal replica-
tion strategy, from primary-backup, where f + 1 mem-
bers are required for fault-tolerance, to state-machine
replication, where 2 f +1 members are required for fault-
tolerance, then the system would left again in a simi-
lar problem where acknowledged durable writes may be
lost under a number of failures less than f . As a strat-
egy for application composition, documentation is insuf-
ficient because it is not machine checked or generally
specified, and consequently places the burden of ensur-
ing that compositions are correct through either manual
or semi-formal testing [1].

2.3 Solution: Subtype Polymorphism
In the field of programming languages, subtype (a form
of inclusion) polymorphism is a technique to relate data
types to other data types through a notion of substi-
tutability. Substitutability is a property where code writ-
ten to operate on the supertype can safely be substituted
for any of the subtypes in the subtyping relationship. [10]

Set

Set1 SetN where N 6= 1

Figure 1: Hasse diagram depicting interface required by
Zookeeper / Kafka interaction where fault-tolerance of 1
crash failure is required. In this case, the system should
prohibit the use of Set1 statically.

To simplify our example, let us assume a desired fault-
tolerance level of f and that membership is presented

2

by Zookeeper as a set containing a list of node identi-
fiers. Using this, we can type the membership interface
of Zookeeper as Set, representing the set of any possible
cardinality. Kafka, is looking for Set0 or SetX where f is
the desired fault tolerance level and X = (f +1). Kafka
is written assuming a subtype of the membership, where
Zookeeper provides only the supertype: this is the con-
verse of substitutability, and does not hold. Therefore,
using the membership provided by Zookeeper, without
filtering out membership sets that would violate the in-
variant, can lead to data loss bugs. We depict the subtyp-
ing relation by the Hasse diagram in Figure 1.

3 Example: Sensor Readings

Amazon Greengrass is a service that allows programmers
writing containerized Lambda functions to extend their
processing to the edge, specifically by configuring and
connecting devices designed for the Internet of Things
(IoT) and allowing them to communicate with Lambda
instances and databases running at Amazon Points of
Presence or data centers.

To motivate the case for leveraging parameteric poly-
morphism, we extend our previous example with the ad-
dition of temperature sensors running at the edge that pe-
riodically report temperature of a room within the Green-
grass infrastructure. Using Lambda, developers are able
to write both a producer-driven application that places
aggregates from individual sensor readings into a Kafka
queue as well as a separate consumer-driven Lambda
function to read samples from Kafka and trigger an alarm
if a sensor reading is above or below a particular thresh-
old. This example application is deceptively simple, and
the Lambda function is typed as Float→Bool, the output
being whether or not an alarm should be triggered.

When tested within a simulated sensor environment
inside the data center, our application code may execute
correctly; however, when operating at the edge with real
devices, readings may arrive malformed due to an incor-
rectly operating or provisioned hardware sensor. In re-
ality, the device might return an incompatible NaN (not
a number), an integer if some sensor were configured to
round, ceil or floor values, or the expected and specified
floating point number. Furthermore, these NaNs may
only appear at containers deployed out at the edge and
never at the ones located within the data center. A pro-
grammer has been given “black box” objects for leverag-
ing performance gains and lowering latency spikes due
to proximity, but they have not been given an easy-to-use
methodology to debug and handle issues around inter-
operability and correctness. How can they determine if
something is maybe one kind of value or another?

In our trivial example, the type of sensor readings
are overspecified: invalid sensor readings consumed by

Kafka for processing with Lambda may lead to triggered
decisions based on those sensor readings to fail because
the consumer of the queue always expects to read val-
ues of type Float. Imagine this simple failure being ex-
panded to more complex application chains of Lambda
functions, ones involving sidecar proxies and load bal-
ancers, stream processors and data stores, or other queue-
driven systems, e.g. Amazon Kinesis, all of which may
occur downstream and rely upon the possibly malformed
data Kafka is receiving. An interconnected system, made
up of a myriad of container-based components, could be-
come infected, causing false triggers and misinforma-
tion. Chaos Engineering, distributing tracing, and dis-
tributed replay debuggers have all attempted to solve this
problem, but only do so after the fact — after the wrong
information has already propagated throughout compo-
nents.

3.1 Solution: Parametric Polymorphism

The right type of data arriving from the queue in
our example is Option[Number], a parameterized type
with variants that can be matched on Some[Float] or
Some[Integer], which can be coerced into a Float, repre-
senting a valid and applicable temperature reading from a
sensor, or the None type. The latter represents an invalid
temperature reading that was either corrupted in transit
(i.e. incorrectly deserialized) or the result of malfunc-
tioning or wrongly provisioned sensors (i.e. returning a
value of the wrong type, like String). Accordingly, our
Lambda function should be typed Option[Number] →
Option[Bool], from sensor input to the receiving trig-
gered computation.

This propagation of the Option[A] type is pervasive
in the chaining of Lambda functions where a Lambda is
invoked in response to a particular event, e.g. queue in-
sertion or object creation or modification, by passing the
object into the Lambda invocation as a formal parameter.
In Lambda chaining, users write a function (A→B)→ ()
where an object of type A is transformed to an object of
type B before being inserted into a queue or database for
the next stage of processing, all which finally returns the
type Unit. While this is what the programmer explicitly
wants to encode, the execution model of Lambda makes
no guarantees that the object passed as a formal param-
eter matches type A, therefore relying on the program
to provide their own ad hoc implementation of Option
types.

Parametric polymorphism allows developers to pa-
rameterize types based on a generic type and write appli-
cation code that operates on these generic types. This en-
ables the programmer to write code like Number → Bool
and trivially extend this code to the generic Option type,
yielding a function Option[Number] → Option[Bool].

3

This type has now been specialized to account for values
being read from the queue that either were (a.) corrupted
in transit or (b.) the result of an invalid sensor reading.

4 Towards a Type System

Solutions for standardizing a specification across a chain
of containers would involve preserving invariants across
sub-components while speaking a variety of APIs, each
of which with its own semantics. What has been pro-
posed and attempted thus far has mostly been ad hoc and
error prone: interfaces are adapted to fit any way possible
and mostly specified by implementation only.

To solve the problem we need a technique for speci-
fying the types of the interfaces that are at the boundary
between different interacting containers, and a technique
for specifying the dependency graph between the inter-
faces describing their interactions with one another that
allows us to analyze whether or not the interactions are
well typed.

4.1 Interface Description Languages

A discussion of object-oriented distributed programming
would be remiss if it failed to mention OMG’s Com-
mon Object Request Broker Architecture (CORBA) sys-
tem [14]. CORBA set out to enable transparent dis-
tributed programming across different architectures, dif-
ferent platforms, and different languages. As CORBA
supported remove method invocations on distributed ob-
jects from different languages, objects would need to de-
fine their interfaces in an external format, referred to as
an Interface Definition Language (IDL). This definition
would assist in type conversion and mapping the objects
between the source and destination languages.

CORBA, while successful, demonstrated that trans-
parency was problematic because of the fundamental
problems of distributed computing: latency and partial
failure [7]. Techniques such as Java’s Remote Method
Invocation (RMI) proved more successful by specifically
identifying only a subset of objects that would be ac-
cessed remotely, forcing the developer to think about dis-
tribution at these particular interaction points. Modern
container-based distributed programming avoids these
same pitfalls by also forcing the developer to explicitly
provide interfaces that will be the boundary points be-
tween different containers. However, many approaches
to date do not specify these interfaces precisely: most
APIs today speak JSON over REST, a dictionary format
that is defined dynamically at runtime and does not lend
itself well to being verified statically.

Therefore, approaches such as the OpenAPI specifica-
tion have attempted to formalize this by specifying typed

APIs and implementations such as Swagger, then syn-
thesize multi-language interfaces based on this specifica-
tion. However, these interfaces remain dynamic at run-
time. We believe there is no inherent challenge to mass
adoption of a typed specification for APIs, as approaches
like Swagger, Google’s Protocol Buffers and Apache’s
Thrift have demonstrated. However, many of these sys-
tems remain primitive and do not support advanced type
system feature, such as the polymorphic types that are
discussed in this paper.

4.2 Soundness Across Boundaries
Inspired by Felleisen et al., [6] our approach is to spec-
ify the interfaces of container-based components and the
boundaries between these components. These specifica-
tions are then checked via standard type checking pro-
cedure [13, 5, 12], or if necessary, using some sort of
static solver. This “type-checker” for interfaces between
container-based components either rejects problematic
configurations, or just typechecks. For a program that
typechecks, one of the following three situations are pos-
sible: (1) the configuration of container-based compo-
nents is valid and requires no adaptation, (2) we gen-
erate a container that performs implicit conversion be-
tween types, or (3) we generate a container which per-
forms contract enforcement.

It is necessary, but not always possible, to perform im-
plicit conversions between component outputs and inputs
in the case where outputs and inputs do not exactly match
up. Its necessary to provide contract enforcement when
we want to filter particular values of a type from being
provided as an output for another container’s input.

In the Kafka example, to remain tolerant to 1 crash
failure, we must prevent Kafka from being notified of a
replica set containing one member. With implicit con-
version, we can convert the singleton set to an empty set,
which prevents the system from violating safety by re-
fusing writes when a single replica is available. With
contract enforcement, we can prohibit Kafka from being
notified of singleton set values for the replica set, causing
Kafka to attempt to write to unavailable members of the
cluster, also preserving safety, but performing additional,
useless work. Choosing the correct solution is up to the
programmer of the application and the components being
used.

4.3 Further Challenges
Many difficulties still exist in the realization of the idea
proposed above, including (a.) the provision of a general
type system for container-based components and (b.) that
is suitable for all open-source compositions available to
developers today. We talk more specifically about these

4

issues below.

Typing. Ensuring that a unified type system is adopted
by several different open source projects and consor-
tia, maintained by a group of different developers is a
big challenge to the adoption of this approach. Given
that there is already movement towards standardizing in-
terfaces between different projects in the open source
ecosystem, we imagine that the challenge of encoding
those interfaces formally as types is not insurmountable.

More recently, Burns and Oppenheimer [3] have ar-
gued for a technique inspired by the Simple Network
Management Protocol (SNMP), where Abstract Syntax
Notation One (ASN.1) is leveraged for specification of
data structures and their serialization and transmission
over the network. While this encoding of polymor-
phic types with ASN.1 has been previously explored in
academia, it remains unclear if this is a viable or desir-
able approach in practice. [3, 9]

Subtyping relation. Ensuring that a subtyping relation
is general enough to support all possible consumers of
the interface seems as if it may be more challenging in
systems that provide richer APIs, such as a system like
Kafka which provides enqueue and dequeue APIs. That
said, this approach can prove incredibly valuable in sys-
tems like Zookeeper, which are core infrastructure used
by a large number of other systems.

To express more complex boundary interactions, the
solution may be to adopt dependent type theory [11],
which can describe a greater cardinality of enumerations
and identify a correct subset of possible subtypes based
on the value(s) associated with a type. A standard exam-
ple in dependent type literature is expressing a function
which returns the first element of a list [2], which would
have the type of first : Πn : Nat.Vector(n+1) → data.
Described this way, the first function would cause a com-
pilation failure whenever a developer attempted to apply
it to an empty vector.

5 Conclusion

In building distributed applications today, containers are
the lingua franca. However, the challenges in ensur-
ing that applications built from the composition of con-
tainers remains largely a burden on the application de-
veloper. This is only further exacerbated by the fact
that containerized applications are written using differ-
ent programming languages and have underspecified re-
quirements, but present interfaces that, to the developer,
seem to be easily compatible with one another. In this
work, we have proposed a technique inspired by the pro-
gramming language community that we believe will ease
the burden of building large-scale container based appli-
cations by providing a basis for ensuring compositions

are correct.

References

[1] ALVARO, P., ROSEN, J., AND HELLERSTEIN, J. M. Lineage-
driven fault injection. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015), ACM,
pp. 331–346.

[2] ASPINALL, D., AND HOFMANN, M. Dependent types. In Ad-
vanced Topics in Types and Programming Languages. The MIT
Press, 2004.

[3] BURNS, B., AND OPPENHEIMER, D. Design patterns for
container-based distributed systems. In 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16) (Denver, CO,
2016), USENIX Association.

[4] CARDELLI, L., AND WEGNER, P. On understanding types, data
abstraction, and polymorphism. ACM Comput. Surv. 17, 4 (Dec.
1985), 471–523.

[5] CREMET, V., GARILLOT, F., LENGLET, S., AND ODERSKY, M.
A core calculus for scala type checking. In International Sympo-
sium on Mathematical Foundations of Computer Science (2006),
Springer, pp. 1–23.

[6] FELLEISEN, M., FINDLER, R. B., FLATT, M., KRISHNA-
MURTHI, S., BARZILAY, E., MCCARTHY, J., AND TOBIN-
HOCHSTADT, S. A programmable programming language. Com-
mun. ACM 61, 3 (Feb. 2018), 62–71.

[7] KENDALL, S. C., WALDO, J., WOLLRATH, A., AND WYANT,
G. A note on distributed computing. Tech. rep., Mountain View,
CA, USA, 1994.

[8] KYLE KINGSBURY. Call me maybe: Kafka. https://

aphyr.com/posts/293-call-me-maybe-kafka. Accessed:
2018-03-19.

[9] LAVENDER, R. G., KAFURA, D. G., AND MULLINS, R. Pro-
gramming with asn. 1 using polymorphic types and type special-
ization. In ULPAA (1994), pp. 151–166.

[10] LISKOV, B. H., AND WING, J. M. A behavioral notion of sub-
typing. ACM Trans. Program. Lang. Syst. 16, 6 (Nov. 1994),
1811–1841.

[11] MARTIN-LÖF, P. Intuitionistic type theory, vol. 1 of Studies in
Proof Theory. Lecture Notes. Bibliopolis, Naples, 1984. Notes
by Giovanni Sambin.

[12] MILNER, R. A theory of type polymorphism in programming.
Journal of computer and system sciences 17, 3 (1978), 348–375.

[13] PIERCE, B. C., AND TURNER, D. N. Local type inference.
ACM Transactions on Programming Languages and Systems
(TOPLAS) 22, 1 (2000), 1–44.

[14] VINOSKI, S. Corba: integrating diverse applications within
distributed heterogeneous environments. IEEE Communications
magazine 35, 2 (1997), 46–55.

5

