
Method Overloading the Circuit
Christopher Meiklejohn

∗

Carnegie Mellon University

Pittsburgh, PA, USA

cmeiklej@cs.cmu.edu

Lydia Stark
†

University of Alaska Anchorage

Anchorage, AK, USA

lrstark2@alaska.edu

Cesare Celozzi

DoorDash, Inc.

San Francisco, CA, USA

cesare.celozzi@doordash.com

Matt Ranney

DoorDash, Inc.

Pittsburgh, PA, USA

matt.ranney@doordash.com

Heather Miller

Carnegie Mellon University

Pittsburgh, PA, USA

heather.miller@cs.cmu.edu

ABSTRACT
Circuit breakers are frequently deployed in microservice ap-

plications to improve their reliability. They achieve this by

short circuiting RPC invocations issued to overloaded or fail-

ing services, thereby relieving pressure on those services and

allowing them to recover. In this paper, we systematically

examine the state of the art in industrial circuit breakers de-

signs. We first present a taxonomy of existing, open-source

circuit breaker designs and implementations based on a sys-

tematic mapping study. We then examine the relationship

between these circuit breaker designs and application reli-

ability. We make a clear case that incorrect application of

circuit breakers to an application can hurt reliability in the

process of trying to improve it. To address the deficiencies

in the state of the art, we propose two new circuit breaker

designs and provide guidance on how to properly structure

microservice applications for the best circuit breaker use. Fi-

nally, we identify several open challenges in circuit breaker

usage and design for future researchers.

CCS CONCEPTS
• Computer systems organization→ Reliability.

KEYWORDS
fault tolerance, fault injection, verification

∗
Research performed as an independent contractor for DoorDash, Inc.

†
Research performed as an REUSE student at Carnegie Mellon University.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9414-7/22/11.

https://doi.org/10.1145/3542929.3563466

ACM Reference Format:
Christopher Meiklejohn, Lydia Stark, Cesare Celozzi, Matt Ranney,

and Heather Miller. 2022. Method Overloading the Circuit. In SoCC
’22: ACM Symposium on Cloud Computing (SoCC ’22), November 7–
11, 2022, San Francisco, CA, USA.ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3542929.3563466

1 INTRODUCTION
The widespread adoption of both microservice architectures

and cloud computing services have forced developers to deal

with a new type of application complexity: partial failure,
where one or more of the services that their application de-

pends on to provide service to customers may be unavailable

or malfunctioning. As a result of this new complexity, the

developers of these applications have been forced to adopt

both fault injection and fault tolerance techniques in order to

ensure the reliability of their application.

Fault injection is typically used to identify vulnerabilities

in application code before [36] and after [49] deployment

to production. One example is identifying latent application

bugs, activated by the unavailability of a service dependency,

as part of functional testing [36]. Fault tolerance both compli-

ments and leverages fault injection by ensuring that a fault

does not propagate to other services and result in a cascading

failure of the application. For example, when an undetected

latent application bug is activated by the unavailability of

a dependency, checking that the invoking service dynami-

cally re-configures itself to avoid invoking the unavailable

dependency until it becomes available again.

The desired outcome from the use of fault tolerance in

microservice applications is to ensure that application code

can both tolerate and react, in an application-specific way, to

both non-fatal and fatal errors of service dependencies. For

example, by hiding malfunctioning features in the case of

non-fatal errors, or asking the user to retry their request later

or to contact customer support in the case of fatal errors.

Rather unfortunately, the fault tolerance techniques used

today are primitive in design, focusing primarily on the fail-

ure of an entire service instead of considering the case where

https://doi.org/10.1145/3542929.3563466
https://doi.org/10.1145/3542929.3563466


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

only a single method of a service may be malfunctioning

due to an application bug (i.e., runtime exception.) Under

this design assumption, one such fault tolerance technique,

circuit breakers, may simultaneously reduce the reliability of

an application, while trying to improve it, by dynamically re-

configuring the application to avoid invoking all methods of

a dependency when only certain methods of that dependency

are producing errors. This specific case represents a grow-

ing concern, as the incremental development and increased

deployment cadence, common to microservice applications,

results in an increased chance of shipping bugs that affect

only a subset of a given service’s functionality.

Inspired by observations made at DoorDash, a food or-

dering and delivery platform built using a microservice ar-

chitecture composed of over 500 services, we systematically

examine the state of the art of one of the most commonly

used fault tolerance techniques for microservice applications

today: circuit breakers. We develop a taxonomy of existing

circuit breaker designs and identify two key properties that

may impact their successful application for fault tolerance:

first, their scope, or where the circuit breakers can be applied

in application code, and their transparency, whether the ap-
plication or use of a circuit breaker is visible in application

code. We use this taxonomy to examine the relationship be-

tween circuit breaker design and application reliability. We

demonstrate that, when it comes to using circuit breakers

to contain failures as a result of application bugs, that all

existing designs are at odds with commonly used abstraction

mechanisms in modern, high-level programming languages.

We identify two clear outcomes of this tension between

circuit breaker usage and abstraction. First, application de-

velopers must perform extra, and often redundant, work in

order to achieve the proper fault tolerance scope when fail-

ure inevitably occurs. This work may not be immediately

obvious to developers when adding new features if the ap-

plication of the circuit breaker is in shared functions that

are being reused, but not directly modified. Second, that

transparency, while a desirable property, may complicate the

correct scoping of circuit breakers by hiding its usage from

application developers. With transparency, application devel-

opers may not even be aware that code with a circuit breaker

needs refactoring nor that a circuit breaker is present.

Finally, to address this tension, we propose two new circuit

breaker designs that mitigate the impact of abstraction on

circuit breaker scope — thereby enabling code reuse and

reducing duplication — and provide guidance on selection

of the correct design based on the application structure.

2 BACKGROUND: MICROSERVICES
Microservice architectures are the most common software

architectural style chosen by the developers of rich-web

CDS ADS

CDE ElastiCache RDS

RDS

DynamoDBStats

Activation

Ownership

Assets (S3)Metadata (S3)

Figure 1: Audible, with audiobook retrieval process.

and mobile applications today. In fact, all companies in the

Fortune 50 are hiring developers to work on microservice

applications, as some component of their infrastructure or

application relies on microservices [36]. From an architec-

tural point of view, microservice architectures decompose an

application’s implementation into separate services by busi-

ness logic or feature: these services then take dependencies

on other services to deliver their functionality. Each of these

services then are developed and deployed by independent

teams to improve the delivery of software at scale [34].

2.1 Audible
To provide the reader with an understanding of how appli-

cations are structured, we use an example from our prior

work [36]. In Figure 1, we depict the microservice applica-

tion behind Audible [1]. This application uses both services

that are developed by Audible and cloud services, such as

databases. We highlight the audiobook retrieval process to

demonstrate how all of the services in this microservice ap-

plication work in concert to deliver end-user functionality.

When a user requests an audiobook using the Audible app,

it first issues a request to the Content Delivery Engine to find

the URL of the Content Delivery Service (CDS) that contains

the audiobook assets. The app then makes a request to that

CDS. The CDS first makes a request to the Audible Download

Service (ADS). The ADS is responsible for first verifying that

the user owns the audiobook. Next, the ADS verifies that

a DRM license can be acquired for that audiobook. Finally,

it updates statistics at the Stats service before returning a

response to the CDS. If ownership of the book cannot be

verified or a license cannot be activated, an error response

is returned to the ADS, which propagates back to the user

through an error in the client. Once the ADS completes it

work, the CDS contacts the Audio Assets service to retrieve



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

the audiobook assets. Then, the CDS contacts the Asset Meta-

data Service to retrieve associated metadata. Finally, these

assets are returned to the user’s app for playback.

To understand how partial failure can result in application

outages when not tolerated, we describe an outage that Audi-

ble experienced between 2017-2018. There is an assumption

that if an audiobook exists in the system and the assets are

available, the metadata will also be available. However, this

may not always be the case. In fact, and as demonstrated

in [36], this precise fault can be detected through fault pre-

vention techniques that use fault injection. The developers

may choose to either specifically write error handling for

this case or ignore the fault under the assumption that this

invariant will never be violated. However, in this outage the

invariant was violated, for reasons not disclosed by Audible

and are presumably related to operator or database error.

This resulted in a cascading failure and subsequent outage

of the Audible application. The outage is a result of several

faults. Starting with the lack of error handling, a generic

error is propagated back to the mobile application that, upon

receiving the generic error, assumes the failure was transient

and consequently retries the request a finite number of times.

When all of the retries return failure, a generic error is pro-

vided back to the user in the mobile application that causes

the user to issue a retry. This combination of user-initiated

retries for requests that will ultimately fail, paired with the

combination of a popular audiobook, is enough to exhaust

available compute capacity and cause the application to fail.

Takeaways. If the developers had used a fault tolerance

technique, such as a circuit breaker, it could have prevented

the system from processing client-initiated retries upon re-

peated failure through dynamic reconfiguration. However,

use of a circuit breaker in this case requires proper scoping.

For example, this circuit breaker would have to prevent fur-

ther requests for that specific audiobook. A circuit breaker

applied too broadly — to the request that is used to retrieve

any audiobook — would have effectively induced an appli-

cation outage while simultaneously trying to prevent one.

Therefore, developers must be aware of application structure
when selecting and implementing a circuit breaker.

2.2 DoorDash
DoorDash is a food ordering and delivery platform built

using a microservice architecture composed of over 500 ser-

vices, primarily written in the Kotlin programming language,

which runs on the JVM. Our decision to adopt microservices

was made to improve developer productivity at scale [6].

Each service in our microservice application platform pro-

vides a specific set of functionality that is grouped by busi-

ness logic (e.g., ordering, delivery) and the software lifecycle

for those services are managed by an independent team.

While DoorDash has only just started our journey into

fault prevention through the use of fault injection [19], we

rely heavily on load shedding and circuit breaking to ensure

the fault tolerance of our platform. More specifically, we

combine cluster orchestration, circuit breaking, and load

shedding towards achieving our reliability goals.

Cluster orchestration is used to support rolling deploys

of services where those services are deployed into replica

sets using load balancers to distributed load across all of the

instances in the replica set. Services are automatically health

checked and removed from the cluster when malfunctioning

or are in a failed state due to a crash failure. Auto-scaling

rules and restart policies are used to ensure that a minimum

set of nodes are operational at any given time.

Load shedding is used at each service instance to ensure

that services refuse, or short-circuit, incoming requests when

the service is either already overloaded or at risk of an over-

load should they process the incoming request.

Circuit breaking at each service is used to prevent re-

peated invocation of a failing or malfunctioning service by

dynamically re-configuring the application to short-circuit

the remote call until the remote service begins functioning

properly. However, since remote calls are automatically re-

tried at least once — only in the event of a failure response

and not a timeout error which may indicate a failure of a

transitive dependency — and since cluster orchestration au-

tomatically removes instances that are failing their health

checks, more often than not the retried request will succeed

because it will be routed a non-crashed replica upon retry.

Takeaways. Circuit breakers are used to minimize the im-

pact of service dependencies that may be malfunctioning

in application code and not affect all methods of the de-

pendent service. For example, application bugs that trigger

runtime exceptions such as ArrayOutOfBoundsException
or NullPointerException due to the arguments provided

by the invoker or cascading failures due to application bugs

triggered by transitive downstream dependencies.

3 CIRCUIT BREAKERS
Two commonly used fault tolerance techniques used in mi-

croservice applications are circuit breakers and load shedding.
Circuit breakers [41, 47], named after their electrical cir-

cuit counterparts [20], are implemented where a dependency

is invoked, in order to prevent repeated invocation when the

remote service either fails to respond, responds too slowly,

or returns a failure response too often. Load shedding [25, 26,

39, 52], also named after the similar technique used by elec-

trical power companies (i.e., rolling blackout [21]) to avoid

system risk by limiting access to electrical power, is typically

implemented at the invoked service, where requests can be

short-circuited by immediately returning an error if a service



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

is in an already overloaded condition or risks overloading if

it processes the request. Previous academic work has consid-

ered these two variations of the same mechanism, with the

former being an instance of a client-side circuit breaker and

the latter an instance of a server-side circuit breaker [28, 40].

Circuit breakers have seen adoption as a fault tolerance

technique in large, industrial microservice applications such

as Netflix, with their open-source Hystrix [14] library. While

early designs of circuit breakers required developers to wrap

invocations to remote services in conditional branches and

manually increment success or failure counters used by the

conditional’s predicate, the momentum is shifting away from

this design. Hystrix [14], for example uses method annota-

tions in Java to guard invocations to that method using a

circuit breaker. The circuitbreaker [11] library in Python

uses a similar annotation-based design. One obvious assump-

tion of this design is that circuit breaking should be per-

formed at the level of the method issuing the remote proce-

dure call (RPC). However, this design is problematic when

the method used to invoke the RPC is either parameterized

or overloaded to support reuse by multiple callers who may

be invoking different RPC methods on the same service or

different RPC methods on different services.

Most recently, Netflix has spearheaded an initiative within

Envoy [10], a communication proxy for microservice appli-

cations that is commonly used in combination with the Ku-

bernetes [13] cluster manager, to integrate circuit breakers

directly into the infrastructure layer. This design eliminates

the need for manual developer-written annotations, thereby

giving developers circuit breakers “for free.” This design

could be seen as a reaction to the potential ad-hoc and error

prone use of circuit breakers that require manual annota-

tions: for example, where a developer may simply fail to

implement one where necessary and leave the application

open to a cascading failure as a result of a unhandled fault.

Transparency may also adversely affect scoping by failing to

alert the developer through a visual cue that a certain appli-

cation abstraction choice — for example, method indirection,

if transparency is used in the application — is not compatible

with the current circuit breaker design.

Generally speaking, circuit breakers interpose on the RPCs

that are issued between two different services. They observe

the responses from each RPC issued by the service and accu-

mulate counters for various metrics such as response time,

number of errors received, and number of outstanding re-

quests using a sliding window. If implemented in the appli-

cation, this interposition is typically either done using au-

tomatic instrumentation provided by the language runtime,

through the use of interceptors or decorators, or explicitly

by inspecting the request and response prior to, and after, an

RPC invocation. If implemented in the infrastructure, this

interposition is typically done using a proxy service.

Circuit breakers start in the closed state where RPCs are

issued as normally. If response times or error counts exceed a

threshold within this window, the circuit moves into an open
state where RPCs are short-circuited and a predetermined

error response is returned to the application to indicate that

the circuit is open. From there, circuit breakers eventually,

dependent on their configuration, move into the half-open
state where some requests are allowed through in order

to determine if the circuit should move back into a closed

state: this is the circuit breaker’s initial state. From there, any

subsequent failure moves it back into the open state.

Implementations may provide the ability [16, 17] to per-

form the process of determining whether a circuit should

move back into the closed state asynchronously using an

API provided by the invoked service. This is commonly re-

ferred to as a health check. These health check APIs may

be provided by a cluster orchestration system (e.g., Kuber-
netes [13]) or by the service itself, if the health of the service

is based on non-trivial application logic or the availability

of other dependent services or data stores. In short, these

health checks return either a success or error response based

on whether the service is able to accept more requests using

cluster state, service state, or other application metrics.

3.1 Taxonomy Construction
Our methodology for taxonomy construction is both moti-

vated by our experience of deploying and debugging circuit

breakers in production and builds upon a previous academic

systematic mapping study [28]. The taxonomy is not meant

to be comprehensive. Rather, this paper focuses specifically

on a software engineering perspective: abstraction, when

applying circuit breakers to application code.

3.1.1 Methodology. To identify circuit breaker implementa-

tions, we used our own experience at DoorDash with deploy-

ing circuit breakers augmented with the implementations

identified by the Falahah et al. [28] study.
In terms of infrastructure-level circuit breakers, we were

only aware of one design, implemented in Envoy as an

“adaptive concurrency control filter” [5] and both integrated

in Kubernetes and packaged together as Istio. This is the

infrastructure-level circuit breaker that we have started us-

ing at DoorDash. In terms of application-level circuit break-

ers, we combined our own knowledge of applying circuit

breakers at DoorDash with the implementations identified

by the aforementioned systematic mapping study.

For each application-level implementation, we used their

open-source documentation to identify how each circuit

breaker could be used. We were specifically concerned with

two aspects of use. First, how the circuit breaker could be ap-

plied in application code. For example, by wrapping the RPC

invocation in a conditional based on circuit breaker state,



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

applying to a method that encapsulated an RPC invocation,

or attaching to an RPC client. Second, whether the circuit
breaker was visible in application code or applied automati-

cally by a supporting library, framework, or other automatic

instrumentation method. These categories emerged from the

data organically and were refined as each implementation

was examined as necessary.

3.2 Taxonomy
Circuit breakers may be implemented in either the applica-
tion- or in the infrastructure-layer. Application-layer circuit
breakers may be used explicitly or transparently. Transparent
usage does not require developers implement circuit break-

ers in the application code, but are installed through some

manner of automatic instrumentation or use of an external

library. Explicit usage requires that developers manually in-

stall them in application code at the call site, surrounding

function, or elsewhere. Circuit breakers may be installed at

the callsite, the encapsulating method, or on the RPC client.

3.2.1 Explicit. There are three explicit circuit breakers, of
increasing coarseness: callsite, method, and client.

A callsite-explicit circuit breaker is installed directly at an

RPC invocation site and wraps the invocation using a condi-

tional. This conditional reads the state of the circuit breaker

to determine whether or not to actually invoke the RPC. De-

velopers are responsible for incrementing both success and

failure counters that are used by the conditional’s predicate

to control the circuit breaker’s state. For example, Akka’s

CircuitBreaker [3] for Java, Ameria’s CircuitBreaker [4]
for Java, App-vNext’s Polly for .NET [7], circuitbreaker [15]
for Go, Comcasts’s jrugged [8] for Java, and pybreaker [9]

for Python can all be used explicitly at each callsite.

A method-explicit circuit breaker is installed using an-

notations on a method invoking an RPC. This annotation

indicates the thrown exceptions or return values that should

increment the error counter used by the circuit breaker. For

example, Netflix’s Hystrix [14] for Java, Resilience4j [18] for

Java, App-vNext’s Polly for .NET [7], and pybreaker [9] for

Python all provide the ability to decorate methods or other

functional (e.g., lambda) interfaces.

A client-explicit circuit breaker is installed by explicitly

adding a decorator on the RPC client (e.g., gRPC intercep-

tor, HTTP client decorator) to enable the circuit breaker.

This circuit breaker can be shared across multiple clients,

if in a programming language that shares objects by refer-

ence. For example, Ameria’s CircuitBreaker [4] for Java,

Resilience4j [18] for Java, App-vNext’s Polly for .NET [7],

and circuitbreaker [15] for Go all allow circuit breakers

to decorate a RPC client.

Client-explicit circuit breakers can also be used differently

by the application, either by sharing a single client or in-

stantiating different clients where needed in the application.

With a 1 client-explicit circuit breaker, a single client is used
for multiple RPCs from different call sites. This may be im-

portant to reduce overhead of establishing a new RPC client,

resolving DNS, and potentially setting up required TLS con-

nections. With an N client-explicit circuit breaker, a new RPC

client is used for each RPC invocation. Rather obviously,

when a new client is used at each invocation site, the circuit

breaker is equivalent to a callsite-explicit circuit breaker.

3.2.2 Transparent. Any design can be made transparent by

abstraction (e.g., a client library used by developers for the

creation of RPC clients) or through the use of automatic

instrumentation. Typically, these implementations are not

open-source, but kept private for internal use, as they contain

logic specific to that company’s RPC usage. Therefore, we

highlight one example that demonstrates an implementation

strategy that is widely used.

A client-transparent circuit breaker is the same as a client-
explicit circuit breaker using decorators or interceptors, but

is automatically installed through automatic instrumenta-

tion (e.g., javaagent) or inclusion of a third party RPC li-

brary with the circuit breaker already attached. For example,

DoorDash’s Hermes [2], a RPC library that wraps GRPC

invocations, automatically attaches circuit breakers to each

RPC client using decorators. Similar to client-explicit circuit

breakers, it can be used in the 1 client or N client style.
We did not find any instances of a method-transparent or

a callsite-transparent circuit breaker. This does not indicate
that these designs do not exist or have not been implemented,

but rather states that none of the implementations that we

examined exhibited these designs. We provide a description

below on why we believe these designs may not exist.

A method-transparent circuit breaker would be automat-

ically installed at each method that invokes an RPC. This

may be non-trivial for several reasons in practice.

First, while a static analysis may be able to identify where

RPCs are defined in application code, this relies on know-

ing precisely what libraries, classes, modules, methods, or

functions called by the application result in RPCs. This is

complicated by RPC mechanisms that use code generation,

as the circuit breaker library would have to be aware of

application-specific RPC stub classes that are generated at

compile time, in order for this to be complete.

Further complicating the analysis is the use of higher-

order functions inmodern high-level programming languages

where methods or functions can be passed between func-

tions to be executed later. This would require a sufficiently

advanced intraprocedural analysis at or before compile time,



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

which may not be possible nor practical, and would necessar-

ily have to either under- or over-approximate where these

calls are made to keep the analysis tractable.

Once the analysis is completed, the circuit breakers would

have to be automatically installed at either compile time

— through bytecode transformations, macro application, or

using a technique like aspect-oriented programming.

A client-transparent circuit breakerwould be automatically

installed at each callsite where an RPC is invoked. Similar

to the method-transparent circuit breaker, it would require

a similar analysis and the same bytecode transformation

or macro application required to rewrite this code to use a

circuit breaker. This circuit breaker would provide both the

most granular scope, that of the precise callsite where the

RPC invocation occurs, and minimize developer overhead

in using the circuit breaker through transparent application.

In that respect, out of the possible designs outlined in this

section, it is the most desirable.

3.2.3 Sensitivity. Sensitivity is the property that indicates

how the circuit breaker state — the counters that determine

state transitions between open, closed, and half-open — is

partitioned with respect to the RPC that is being invoked.

For example, whether that circuit breaker is sensitive to the

invoked service, the RPC method, or the arguments provided

to the RPC when invoked.

In the majority of cases, sensitivity is inherited from the

circuit breaker’s scope. For example, when using a client-

explicit circuit breaker, all RPCs that are issued using that

client, despite the specific RPC method or arguments pro-

vided, will affect a single state for that circuit breaker. There-

fore, any failures of one RPC method will be counted against

the circuit breaker used for all RPC methods. Similarly, a

method-explicit circuit breaker used on a method that is pa-

rameterized for the RPC service, method, and arguments to

invoke, will increment success and failure counters for any

and all RPCs issued by that method.

When it comes to circuit breakers that are scoped to the

callsite, it depends on the transparency. For example, with a

client-explicit circuit breaker, the developer has control over

when the success and failure counters are incremented, as

they are incremented manually. Therefore, they may choose

to increment the success and failure counters based on ar-

bitrary conditions, along with the returned value from the

RPC invocation. With the client-transparent circuit breaker,

success and failure counters would have to be incremented

uniformly, as it is generally undecidable to determine what

in-scope variables are used to represent the RPC service, RPC

methods, and RPC arguments when issuing the RPC. This is

true because different methods used to issue RPCs may take

parameters in different positions or use global variables to

alter execution at runtime.

3.2.4 Modifying Sensitivity. One example of a circuit breaker

implementation that allows for modifications of the sensitiv-

ity is Armeria’s circuit breaker. Using a CircuitBreakerRule
at the location where the circuit breaker is instantiated, de-

velopers are able to specify that a circuit breaker should be

sensitive to the RPC host, RPC method, or RPC path. These

terms can be a bit confusing in practice as Armeria’s circuit

breaker client is designed specifically for HTTP requests, but

can be used with gRPC, as HTTP is the underlying transport

mechanism for gRPC. Therefore, when issuing aHTTP-based

RPC request, the host is the destination DNS or IP name, the

method is one of the HTTP verbs (e.g., GET, PUT, POST)
and the path is the URI, excluding scheme and port. For

gRPC, host represents the hostname of the gRPC endpoint,

the method is the name of the RPC method, and the path a

combination of RPC service name — taken from the gener-

ated gRPC stub — and RPC method. Finally, developers can

also use a custom function to prepend or append strings to

these attributes to partition circuit breakers in the manner

they wish.

3.3 DoorDash
At DoorDash, our Hermes library [2] — an application-level

client-transparent circuit breaker library — is built on top of

Armeria’s circuit breaker library. Its usage in most applica-

tions follows an N-client style, where a single RPC client is

reused for repeated RPC calls; however, at least one client

exists per invoked RPC service. For example, callers must pro-

vide the RPC service’s definition when retrieving an RPC

client, thereby forcing at least one client per RPC service that

is invoked. In general, we cannot prevent developers from

retrieving more than a single client per RPC service.

It associates a circuit breaker with each client generated by

the library and provides a default configuration for that cir-

cuit breaker containing thresholds and the errors that should

be considered when incrementing the success and failure

counters. Because it is a transparent circuit breaker, applica-

tion developers working in service code do not see any code

related to circuit breakers at all, unless they provide a over-

ridden circuit breaker configuration at the location where

they retrieve the client from the library: this is typically done

using dependency injection in the code that initializes the

service. In the majority of cases, circuit breaker configura-

tions are not changed through the use of overrides.

The circuit breakers that are associated with each client

are scoped using the perPath circuit breaker rule to provide

sensitivity to both the invoked RPC service and method. This

rule is shared across both gRPC and HTTP clients, thereby

providing sensitivity to service and method for gRPC, but

with more sensitivity for HTTP methods than just the HTTP

verb. Since RPCs are issued to service names that resolve



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

to load balancer instances that distribute requests across a

pool of nodes, they are not sensitive to the individual host.

Instead, cluster orchestration and health checks are used to

handle and respond to crash failures of individual instances.

3.4 Takeaways
When it comes to using circuit breakers as a fault tolerance

mechanism for application bugs, the key is maximizing cir-

cuit breaker sensitivity. For example, bugs may affect a single

RPC method of a service or may be dependent on the argu-

ments provided to that method. However, as we have seen,

sensitivity is often tied to the scope of the circuit breaker.
Transparency, a property that is orthogonal to both the

scope and the sensitivity of the circuit breaker, is a desir-

able property for organizations. It mitigates the risk of a

developer forgetting to use circuit breakers in their code,

which would leave the application open to risks of cascading

failures or other outages. In practice, transparency is only

achievable with certain scopes: for example, through the use

of an infrastructure-level (e.g., Envoy) or a client-transparent
application-level (e.g., DoorDash’s Hermes) circuit breaker.

As we will demonstrate using the following two case stud-

ies, the impact on sensitivity is not just related to scope,

but is further exacerbated through abstraction use in the

application code itself.

4 CASE STUDY #1: INDIRECTION
In order to demonstrate the impact of application design and

abstraction on circuit breaker choice and it’s sensitivity, we

present the first of two different case studies. These case

studies are inspired by observations on application design

and circuit breaker usage at DoorDash. They have been both

abstracted and simplified for confidentiality and exposition.

An implementation of these examples in Python is available

as an extension to the Filibuster microservice application

corpus [36] on GitHub [12].

For this case study, we consider the simplified case where

customers can place delivery orders through a mobile ap-

plication. In this example, the creation, modification, and

cancellation of orders is performed by a service in their mi-

croservice architecture: orders.

One possible implementation of the orders service, pre-

sented in Pythonesque pseudocode, is depicted in Figure 2.

Here, orders exposes three RPC endpoints: create, update,

and delete. Each of these three endpoints takes a depen-

dency on the auth service in order to manage the life cycle of

the payment that is associated with the order. We draw the

reader’s attention specifically to the delete endpoint that is

used for order cancellation. When the orders service receives

a request to cancel an order, it first performs some business

logic and then issues an RPC to the auth service to cancel the

1 @orders.method("create")
2 def order_creation(...):
3 try:
4 res = rpc(auth, "create", [order_id, amount])
5 return order_id
6 except Exception as e:
7 // ...
8

9 @orders.method("update")
10 def order_modification(...):
11 res = rpc(auth, "update", [order_id, amount])
12

13 @orders.method("delete")
14 def order_cancellation(order_id : String):
15 res = rpc(auth, "delete", [order_id])

Figure 2: Orders service (abr.) with 3 RPC methods.

1 def order_creation(...):
2 res = issue_auth_rpc("create", [order_id, amount])
3

4 def order_modification(...):
5 res = issue_auth_rpc("update", [order_id, amount])
6

7 def order_cancellation(order_id : String):
8 res = issue_auth_rpc("delete", [order_id])
9

10 def issue_auth_rpc(method, args)
11 return rpc(auth, method, args)

Figure 3: Figure 2 (abr.) with function indirection.

1 @circuit(expected_exception=RPCException)
2 def issue_auth_rpc(method, args):

Figure 4: Figure 3 (abr.) with method-explicit CB.

1 def order_creation(...):
2 res = issue_auth_create_rpc([order_id, amount])
3

4 @circuit(expected_exception=AuthCreateRPCException)
5 def issue_auth_create_rpc(args):
6 return rpc(auth, 'create', args)

Figure 5: Figure 2 (abr.) with proper sensitivity.

payment for the cancelled order. If that succeeds, it responds

with a success; otherwise, it returns an error that propagates

back to the user and asks them to try again. In Figure 3, we

depict an application of method indirection used to reduce

duplication: we highlight the changes from Figure 2.

4.1 Adding Circuit Breakers
At this point, the developer might want to install a circuit

breaker to guard against the unavailability or malfunction-

ing of the auth service. To do this, the developer chooses



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

a popular circuit breaker library; in our example, we use

the circuitbreaker library for Python, one example of a

method-explicit circuit breaker. In Figure 4, we highlight the

modifications needed to install this circuit breaker. Here,

the circuit breaker annotation that is placed on the method

issuing the RPC denotes that any time a RPCException is

thrown, the circuit breaker’s error counter should increase;

any other thrown exceptions should not increment the cir-

cuit breaker’s counters. We imagine that RPCException rep-

resents a generic exception base type for all possible RPC

exceptions. There are two problems with this approach.

(1) First, this design assumes that all RPCs issued by the

orders service using the issue_auth_rpc helper to dif-
ferent methods of the auth service, will all throw the

same exceptions. This simply may not be true. For exam-

ple, RPCs may use different exception types to indicate

different error conditions, where only a subset of types,

depending on invoked service or method, should affect

the circuit breakers counters. Similarly, exceptions may

be parameterized with different error codes, as is the case

with gRPC, where only a subset of the possible parame-

terizations should affect circuit breaker counters. In the

case of gRPC specifically, the application may not want

to affect circuit breaker counters on a gRPC exception

where the error code indicates resource not found, as this

may be an non-fatal error condition for this application —

this is in direct comparison to the Audible example where

a resource not found indicates a fatal error. Therefore,

the method indirection used in this example implies that

all RPC failures should be treated in the same manner.

(2) Second, if an application bug in the auth service happens

to cause just one particular RPC method to return errors

(i.e., delete), the circuit breaker will short-circuit all RPCs
to the auth service (i.e., create, update, delete) even when

the other two endpoints may not be malfunctioning. In

short, our reliability measures have disabled correctly

functioning endpoints when trying to prevent against the

malfunctioning of one specific endpoint. Therefore, the

method indirection used in this example implies that all

RPC failures exhibited by the specific method executing

the RPC should be treated in the same manner.

In short, if all failures are treated similarly (1), and some
failures only occur on some of the RPC endpoints (2), then
failures of one endpoint will affect the circuit breaker for all.

✓ Partitioning: To increase sensitivity, developers

must refactor code to partition RPC invocations that

need separate circuit breaking.

4.2 Increasing Sensitivity
Aligned with our key insight from the previous section, to

provide fault tolerance for each RPC method, we need to

refactor the code so that each RPC invocation to a different

RPC method has its own encapsulating method with its own

circuit breaker.

We depict this refactoring in Figure 5. By structuring our

code in this manner, it allows developers to specify precisely

the failures that should affect the circuit breaker for each

individual method. We demonstrate this using a different

exception type for each method.

Rather obviously, and as made clear by this example, this

is a rather counterintuitive implementation choice: in fact,

this implementation choice only makes sense when circuit

breakers are present as it goes against many common pro-

gramming conventions regarding code reuse. In fact, if we

look at the progression from Figure 2 to Figure 5, the result-

ing implementation is arguably the most verbose, done only

to support circuit breaker behavior.

However, in the presence of method-explicit circuit break-
ers it makes sense: using a method-explicit circuit breaker

implies that circuit breaker behavior is scoped to the invok-

ing method. Similarly, a client-explicit circuit breaker would
require different clients; and a callsite-explicit circuit breaker
would require different call sites for each RPC invocation for

precise circuit breakers.

✓ Scope Partitioning: When partitioning to increase

sensitivity, partitioning must be performed with respect

to the scope of the circuit breaker, at minimum: for

example, the callsite, the method, or the client.

5 CASE STUDY #2: NONDETERMINISM
In the previous section, we identified how aminor refactoring

of the orders service, in order to abstract the method used

for RPC invocation, introduced several complexities when

it came to circuit breakers. In that example, existing circuit

breaker designs only provided the proper sensitivity when

the application was designed with circuit breakers in mind.

In this section, we explore how the use of abstraction, to

support a minor variation on the same set of application

behaviors, complicates the use of circuit breakers. In short,

we demonstrate that if applications need to support these

types of designs, existing circuit breakers are only sufficient

under one, of many, possible different application designs.

An implementation of these examples in Python is avail-

able as an extension to the Filibuster microservice applica-

tion corpus [36] on GitHub [12].

For this case study, we are going to expand our food de-

livery application to support takeout orders in addition to

delivery. This might sound straightforward; however when

a takeout order is cancelled, a different process needs to be

performed to cancel the order. As most of the code needs to

be parameterized on whether or not an order is a takeout or



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

1 @orders.method('takeout/cancel')
2 def takeout_order_cancellation(oid : String):
3 res = issue_takeout_auth_delete_rpc([oid])
4

5 @circuit(expected_exception=RPCException)
6 def issue_takeout_auth_delete_rpc(args):
7 return rpc(takeout_auth, "delete", args)

(a) by Invoking Method and Invoked Service

1 @orders.method('takeout/cancel')
2 def takeout_order_cancellation(oid : String):
3 res = issue_auth_delete_rpc('takeout/delete', [oid])
4

5 @circuit(expected_exception=RPCException)
6 def issue_auth_delete_rpc(method, args):
7 return rpc(auth, method, args)

(b) by Invoking Method and Invoked Method

1 @orders.method('takeout/cancel')
2 def takeout_order_cancellation(oid : String):
3 res = issue_auth_delete_rpc("delete", [oid, 'takeout'])
4

5 @circuit(expected_exception=RPCException)
6 def issue_auth_delete_rpc(method, args):
7 return rpc(auth, method, args)

(c) by Invoking Method and Invoked Args

1 @orders.method("delete")
2 def order_cancellation(oid : String, type : String):
3 res = issue_auth_delete_rpc(type, [oid])
4

5 @circuit(expected_exception=RPCException)
6 def issue_auth_delete_rpc(type, args):
7 return rpc('{}_auth'.format(type), "delete", args)

(d) by Invoking Args and Invoked Service

1 @orders.method("delete")
2 def order_cancellation(oid : String, type : String):
3 res = issue_auth_delete_rpc(type, [oid])
4

5 @circuit(expected_exception=RPCException)
6 def issue_auth_delete_rpc(type, args):
7 return rpc(auth, '{}/delete'.format(type), args)

(e) by Invoking Args and Invoked Method

1 @orders.method("delete")
2 def order_cancellation(oid : String, type : String):
3 res = issue_auth_delete_rpc([oid, type])
4

5 @circuit(expected_exception=RPCException)
6 def issue_auth_delete_rpc(args):
7 return rpc(auth, "delete", args)

(f) by Invoking Args and Invoked Args

Figure 6: Possible parameterizations of Figure 5 (abr.) to support both delivery and takeout.

delivery order, the developers have a number of design deci-

sions that they now face, which we will discuss below. We

assume, as a starting point, the refactored implementation

presented in the previous section: see Figure 5.

When implementing this new functionality, the developers

of the application realize that the code needs to be parameter-

ized based on whether the order is a takeout or delivery order.

There are six possible choices for this parameterization.

First, the developers have to decide on whether or not

they want to parameterize the cancellation method’s name

on whether it is delivery or takeout. If they decide this, they

then have to decide which of the following subsequent pa-

rameterizations they want: parameterization of the invoked

RPC service, method, or arguments. Second, the developers

may also choose to include the order type in the parameters

of the cancellation method. The same three choices apply for

the second parameterization: the RPC service they invoke;

the RPC method they invoke; or the invocation arguments.

We depict these parameterizations in Figure 6. In the fol-

lowing discussion of these parameterizations, we refer to

the method invoked on the orders service as invoking: this
indicates that it is currently executing. When discussing the

method on the auth service, we will refer to it as invoked to

indicate that it is called by the invoking service.

(1) by Invoking Method and

(a) Invoked Service. (Figure 6a) Requires that develop-
ers both duplicate the invoking method’s functional-

ity, once for each order type.

(b) Invoked Method. (Figure 6b) Improves on 1a, as
while it still requires duplication of code on the in-

voking side, it does not require creation of a new

service as it parameterizes the method that it calls.

(c) Invoked Args. (Figure 6c) Further improves on 1b,
as while it still requires the same duplication, it does

not require creation of a new method on the invoked

service, but rather allows the developer to use argu-

ments for control flow.

(2) by Invoking Args and
(a) Invoked Service. (Figure 6d) Reduces the need for

function duplication by only modifying the argu-

ment list for the invoking method to contain the

order type. From here, the developer can use the

type parameter to derive the service that should be

invoked; however, it does require the creation of a

new service and that may require the same duplica-

tion as we saw in 1a.
(b) Invoked Method. (Figure 6e) Improves on 2a, as

while it still requires the modifications to include a



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

new argument to the invoking method, it parame-

terizes the invoked method, similar to 1b.
(c) Invoked Args. (Figure 6f) Further improves on 2b,

as while it still requires the modifications to the in-

voking method, all other changes are made to the

method on the invoked service, similar to 1c.

DoorDash. DoorDash has opted for 2c in existing applica-

tion code. This maximizes code reuse of the invoked service

while minimizing duplication in both the invoked and invok-

ing services. As we will see in the following section, where

we introduce an application bug and want to increase sensi-

tivity this design happens to be one of most challenging.

5.1 Adding Circuit Breakers
In this section, we introduce an application bug to demon-

strate the challenges of increasing sensitivity using our ap-

plication designs from the previous section.

This bug we introduce only affects one type of order: take-
out orders, when cancelled, return an error. However, the

bug does not affect when orders are created or modified. This

bug is localized in the auth service. In the examples where

the auth service has been duplicated with two variants for

each order type, we assume the bug only exists in the service

for takeout orders. This application bug is inspired by an

actual bug experienced by DoorDash where order cancella-

tion was broken for all orders because of a bug affecting one

particular order type.

As before, the methods that encapsulate the RPC invoca-

tions in Figure 6 are annotated with method-explicit circuit
breakers. While this presentation is focused on this type,

the issues discussed apply to both callsite- and client-explicit.
This is consistent with our Scope Partitioning insight.

To start, we consider the case of 1a. Example 1a, presented
in Figure 6a, duplicates both the invoking method and the

method encapsulating the invoked RPC. Therefore, since

the RPC’s encapsulating method is only used for takeout

order cancellations, a method-explicit circuit breaker work
perfectly for disabling the malfunctioning method on the

takeout auth service.

5.1.1 Path-Sensitivity. If we compare this to the rest of the

designs, examples 1b through 2c, we see that all of these
application designs suffer from the aforementioned problems

of method indirection. Therefore, when these circuits open,

they will disable invocations to the cancellation for both take-
out and delivery. This reinforces our Partitioning insight.

That is, to achieve precise method-based fault tolerance using

method-explicit circuit breaking, the encapsulating methods

must be duplicated for each method.

In examples 1b and 1c however, the invoking RPCmethods

are parameterized to indicate the target RPC service, method,

or argument. For example, in 1b, the invoking method is

takeout/cancel. This would indicate that a circuit breaker

that is aware of the RPC invocation path would have the cor-

rect sensitivity needed to disable the malfunctioning method.

✓ Path-sensitivity: Circuit breakers aware of the invo-
cation path, improve the sensitivity of circuit breaking.

5.1.2 Context-Sensitivity. Examples 2a, 2b, and 2c, prove
to be the most difficult application designs. In each of these

examples, a shared encapsulating method is used for each

RPC invocation and the methods that call these shared meth-

ods are also shared. The only differentiation in this example

is done through a parameter provided in the argument list.

This is a textbook example of data nondeterminism where a

provided argument dictates subsequent control flow. In the

specific case of 2a, the provided argument determines the

service to invoke; in 2b, the provided argument determines

the method to invoke; and in 2c, the provided argument is

passed through to the auth service in it’s argument list.

The only way to distinguish these RPCs, sufficiently to

use method-explicit circuit breaking to provide the correct

sensitivity for a single method on the specific auth service

invoked, is to inspect the contents of the RPC arguments at

the invoking service. We remind the reader that since the

method-explicit circuit breaker is checked upon entry into

the enclosing method, the exact arguments of the RPC that is

about to be invoked are not yet known. For example, string

interpolation, as used in both 2a and 2b, may change the

service or method after the circuit breaker is checked.

✓ Context-sensitivity: Circuit breakers, aware of the
invoking RPC’s arguments, can further improve the

sensitivity of circuit breaking.

6 IMPLICATIONS
In order to provide guidance to the developers of microser-

vice applications, it is necessary to first provide a more ab-

stract view on the impact of application design on circuit

breaker design selection and how it relates to sensitivity.

To do this, we use an example of an application composed

of 3 services: A, B, and C. In this application, A issues an

RPC to B; when B receives and RPC from A, it first issues an
RPC to C and waits for a response before responding to A.
Now, the developer wants to extend A with conditional

functionality where B will invoke D instead of C depending

on what arguments are provided to A. This can be seen as

an abstraction of the example Section 5, Figure 6, Example

1a, where a new service is conditionally executed based on

the arguments to earlier RPCs. Additionally, the application

developer wants to use circuit breakers to ensure either the



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

failure of C or D are properly tolerated. For this example,

we assume a single RPC method for both C and D.
The developer has to make several choices at this point.

First, do they prefer infrastructure- or application-level cir-
cuit breakers? If they prefer application-level, do they prefer

transparent or explicit? If they opt for explicit, do they prefer
client, method, or callsite circuit breakers? Finally, will their
selection provide the correct sensitivity?

To understand the implications of application design and

circuit breaker choice on sensitivity, we present the following

decision tree in Figure 7. Here, we explore the implications

of one specific choice of circuit breaker, callsite-transparent,
on all possible application parameterizations when adding

this new feature. The callsite-transparent circuit breaker

maximizes both transparency and scope, thereby minimizing

developer overhead in application and providing the most

graunlar scope: the callsite where the RPC invocation occurs.

However, transparency implies that the application of the

circuit breaker cannot automatically determine the RPC’s

service, method, or arguments from the in-scope variables, as

this is generally undecidable. Therefore, it can only be aware

of what has already occurred prior to the RPC invocation.

This is generally true for all of the designs we observed, with

the exception of the client-explicit design.
To understand the implications of the client-transparent

choice, we start by looking at the implications of choosing a

transparent infrastructure-level circuit breaker, as it forms

the core component of an application-level circuit breaker.

(1) When a new service E is created to support the additional

functionality of D, a infrastructure-level circuit breaker
provides the necessary sensitivity for application bugs

as invocations occur on a new service.

(2) Alternatively, when an existing service B is parameter-

ized to support the conditional invocation of D, either
path or context sensitivity is necessary to provide the

correct sensitivity.

We note that any further parameterization of A to support

the conditional invocation of either C or D has no effect on

circuit breaker selection.

Recall that we did not observe any implementations of the

callsite-transparent circuit breaker design: its an ideal design

that combines all of the desirable properties of the implemen-

tations we did observe. Therefore, we use it as a reference

point. In Figure 8, we present decision trees for the four cir-

cuit breaker designs that we observed and identified concrete

implementations for: callsite-explicit,method-explicit, 1 client-
explicit, and N client-explicit. We highlight the differences in

each diagram from the callsite-transparent design.
• Callsite-explicit. If a different circuit breaker is used and

manually installed at each call site of an RPC, a developer

can manually configure that circuit breaker accordingly

so that it has the necessary sensitivity. This is by far the

approach with the most overhead. It requires manually cre-

ating a circuit breaker for the proper sensitivity, manually

incrementing the failure and success counters, and writing

the appropriate conditionals to guard the invocation.

• Method-explicit. Path-sensitivity is needed to provide the

correct sensitivity for invocations in shared methods and

differ only by the RPC invocation path when the RPC ser-

vice, method, and arguments are inaccessible — as they

are when using decorators that guard method invoca-

tions. When the path differs only by arguments, context-

sensitivity is required.

• 1 client-explicit. The introduction of a different path early

in the RPC invocation chain ensures that path-sensitivity

can provide the correct sensitivity. This avoids the need

for context-sensitivity.

• N client-explicit. If developers are willing to stomach the

performance penalties and development overhead of using

a new RPC client for each invocation, existing client circuit
breaker designs provides the correct sensitivity, as they

mimic the behavior of the callsite-explicit.
In this example, we only consider adding functionality

where a single new method is added and therefore can be

added, in isolation, to a new service. In the even that there is

shared functionality, as discussed in our second case study,

further duplication depending on circuit breaker choice is

required. This is consistent with Scope Partitioning.

6.0.1 Armeria. One notable exception here is the Armeria

circuit breaker. Ameria allows for the specification of cir-

cuit breaker rules that can be added to either a client or

callsite circuit breaker, although this information could be

provided manually for any callsite circuit breaker. These

rules allow for partitioning of the circuit breaker state for

the RPC invocation based on the invoked host, service, or

method. However, these rules only get you so far.

For example, consider the scenario where both a ServiceW

and a Service X invoke a method on Service Y, which invokes

a single RPCmethod on Service Z before returning an answer

to its caller. Now, only the invocations that originate from

W — not X — cause exceptions in the call from Y to Z. In this

case, partitioning the circuit breaker state by invoked host,

service, or method is insufficient for the proper sensitivity

to failures caused by the path originating at W.

6.1 Proposed Implementations
Both path- and context-sensitive circuit breakers require that

the RPC invocation path is tracked and propagated across all

RPC invocations for a single request issued by the end user.

To achieve this, we envision the use of a techniquewe have

been developing separately as part of a larger initiative in

fault injection testing at DoorDash [19]: distributed execution
indexing (DEI) [37].



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

Parameterization
of invoking 

method name 
at Service A.

Callsite-Transparent Application Circuit Breaker
Decision Tree

BA

Transparent Network-level CB
Decision Tree

Transparent Network-level CB
Decision Tree

C

D

Starting Microservice Graph

BA C

DE

Resulting Microservice Graph

Engineers can either choose to 
invoke a new service or 
extend the existing invoked method through 
parameterization.

Application-level CB forces engineers to make one additional 
choice for parameterization:
the invoking method’s name or 
the invoking method’s arguments.

1. 2.

2.

Parameterization
of invoking 

method arguments 
at Service A.

Transparent Infrastructure Circuit Breaker
Decision Tree

Parameterization of invoked service name.
(call E -- a modified copy of B -- instead of B)

Parameterization of 
existing invoked 

method on Service B. Parameterize by 
invoked method arguments.

Parameterize by 
invoked method name.

1.

(ex. 1a)

(ex. 1b)

(ex. 1c)

(ex. 2a)

(ex. 2b)

(ex. 2c)

Service Path Context

Circuit Breaker Types
(Sensitivities)

Figure 7: Decision tree relating abstraction choices to required circuit breaker sensitivites.

DEI is an algorithm for generating unique identifiers —

called execution indexes — for individual RPC invocations

that are tolerant to control flow changes, function indirection,

data, and scheduling nondeterminism. These identifiers are

bothmore abstract andmore precise than existing techniques

for assigning identifiers to RPCs. For example, by avoiding

sensitivity to execution order under concurrent execution

and by ensuring identifiers remain stable under branching

control flow (c.f., 3MileBeach [51].)

Our implementation of DEI integrates directly into the

widely used open-source OpenTelemetry distributed tracing

framework and can automatically instrument our microser-

vices with execution indexes through the use of a runtime

parameter that is supplied to the JVM. Therefore, our plan

is to augment our existing Armeria circuit breaker rule –

the per path rule that contains the invoked RPC service and

method – with the inclusion of a DEI that will allow us to

encode the RPC invocation path thereby providing path-

sensitivity. We envision that a similar design would work for

method-explicit circuit breakers as well.

Context-sensitivity may prove more problematic to imple-

ment in practice, as it needs to be aware of the arguments of

the RPC invocation. While the DEI approach has the ability

to include the arguments into the execution index that it gen-

erates for each RPC invocation, we believe that more often

than not only a subset of the arguments should be included

into these identifiers. For example, in the case of our second

case study, we would most likely want to perform circuit

breaking on order type, but perhaps not the user identifier or

line item number, or order creation time for a takeout order,

as the application bugmost likely would not be dependent on

these fields — but, may be. Therefore, for context-sensitivity



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Parameterization
of invoking 

method name 
at Service A.

Transparent Network-level CB
Decision Tree

Transparent Network-level CB
Decision Tree

Parameterization
of invoking 

method arguments 
at Service A.

(ex. 1a)

(ex. 1b)

(ex. 1c)

(ex. 2a)

(ex. 2b)

(ex. 2c)

callsite-ex
p

licit

m
eth

o
d-ex

p
licit

1
 clien

t-ex
p

licit

N
 clien

t-ex
p

licit

callsite-tran
sp

aren
t

Service Path Context

Figure 8: Decision trees determining circuit breaker sensitivity choice based on application structure.

to work in practice, we imagine that a mechanism would

be required to determine the arguments that should be in-

cluded. We envision that this could be achieved through the

use of custom circuit breaker rules that indicate arguments

that should be excluded when generating execution indexes

installed at each RPC location where a RPC client is created.

Takeaways.We look at these two designs as complimen-

tary and feel that there is need for both. Path-sensitivity

meets the sweet spot of minimal developer overhead with

proper sensitivity when the application is designed accord-

ingly. Context-sensitivity is a more expensive approach but

fulfills a need where an application has already been de-

signed and must be retrofitted with circuit breakers to in-

crease reliability until the code can be refactored. Therefore,

we recommend developers avoid easier to implement appli-

cation designs that require context-sensitivity over slightly

more verbose designs that support path-sensitivity.

7 OPEN CHALLENGES
Circuit breakers remain an area of limited academic study

where further research would be beneficial for addressing

the challenges of correctly applying them. These challenges

arise because proper placement and configuration of a cir-

cuit breaker is non-trivial. If used too coarsely, outside of the

application, they may reduce reliability. If used too finely,

inside of the application, they may misinterpret control flow

or other application behavior as errors and also reduce relia-

bility. Even further, the faults that the system experiences

may be unpredictable and interact with circuit breakers in

unexpected ways.

The two case studies presented in this paper were abstract

descriptions of scenarios and failure modes that we have

experienced at DoorDash. We have also experienced issues

with infrastructure-level circuit breaking aswell, where these

circuit breakers have been scoped too broadly and reduced

the overall reliability of the application when trying to react

and respond to faults where a circuit breaker has disabled

correctly functioning parts of our platform. But, failures

are not always related only to scope. We demonstrate by

providing two other examples that show how external actors

can alter internal circuit breaker state and how aspects of

the programming language itself — if properly handled —

can make circuit breakers not function as expected.

Requests that originate outside of the platform can affect

the circuit breakers that are used internally to the platform

for reliability. In one example, a bot that was crawling our

site was issuing malformed HTTP requests. These requests

caused an internal service, several levels deep in the applica-

tion graph, to return a HTTP 400 Bad Request response back

to the service that took it as a direct dependency. The ser-

vice that received that 400 Bad Request response converted

that error into a 500 Internal Server Error when a generic

error handler was hit, this response was then returned to

its upstream service. This upstream service then counted



SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

this error response against the RPCs error counters until the

circuit breaker opened and disabled this path. Therefore, an

outside user of the service was able to trigger an internal

circuit breaker which caused an outage for other users of the

service when the circuit breaker was tripped.

Circuit breakers may also be misconfigured with respect

to aspects of the programming language. In one example,

Service A does a wide fanout to Services B, C, D, and E using

coroutines to issue the RPCs concurrently. Then, the circuit

breaker between A and E opens, but E has not received any

RPCs from A and therefore did not return any errors that

would have counted against the circuit breaker between A

and E. In this example the circuit breaker between A and E

opened because Service B was immediately returning errors

— and because of coroutine scopingwhere all coroutineswere

issued under a shared scope — the RPCs between A and C, D,

and E were cancelled if not already complete. As cancellation

is performed by raising an exception, a circuit breaker that

was not configured to ignore cancellation exceptions counted

them as errors for the circuit breaker between A and E.

Circuit breaker placement and configuration is also an

area that merits further research. For example, what is the

impact of failure detection speed when partitioning state

across circuit breakers that are sensitive to a particular RPC

method, host, or service? Does the placement of the circuit

breaker (e.g., callsite vs. method) impact what the threshold

configurations should be for that circuit breaker? Does trans-

parency impact how developers write or refactor code for

proper sensitivity? How should a developer be alerted when

a circuit breaker is scoped too coarsely?

At DoorDash, we have only started investigating these

questions [19] by extending the Filibuster [36] fault injec-

tion tool with the ability to target a precise circuit breaker for

mechanical verification. For example, does the circuit breaker

open and then close based on a given threshold of faults, fault

types, and a specific workload. However, this is only the start.

The next steps are to extend this work to ensure that when

a circuit breaker does open that it does not simultaneously

affect the system in adverse ways. Understanding how to

specify that in a way that can be mechanized and applied

across our platform is still an open research question.

8 RELATEDWORK
In terms of the “end-to-end argument” [45], circuit breakers

address the reliability of individual services when applica-

tion bugs occur in their dependent services. This aspect of

fault tolerance is required even when the underlying cluster

manager automatically handles crash failures and the RPC

framework ensures reliable delivery. The first reference to

the use of circuit breakers as a technique for improving the

reliability of a microservice application is from Fowler &

Nygard [29]. Hole [31] then identified them as a key tech-

nology required in building anti-fragile cloud applications

and presented Netflix (and Hystrix [14]) as an exemplar.

Since then, several qualitative studies [22–24, 27, 32, 33,

35, 42, 44, 48, 50] have identified circuit breakers as a core

pattern used to improve reliability in microservice applica-

tions. However, as noted by some researchers [47], circuit

breakers remain an area of limited academic study. When

research does exist, it is primarily focused on the configu-

ration of circuit breakers: for example, the dynamic tuning

of thresholds to improve availability [46], the use of model

checking to determine the optimal configuration to achieve

certain quality attributes [38], or the use of epidemic proto-

cols for circuit breaker state dissemination to improve the

speed of failure detection [43].

Falahah et al. [28] performed a systematic mapping study

of 23 articles on circuit breakers, in isolation, to create a

conceptual model. Our taxonomy differs in two ways:

(1) They consider two different types of implementation

strategies: library, which they use for application-level cir-
cuit breakers, and proxy, which they use for infrastructure-

level circuit breakers. We use the latter, more descriptive

terminology — as most software is provided as a library

— to indicate whether the application has visibility into

the presence (or absence) of a circuit breaker.

(2) They use the property distribution to indicate the coarse-

ness of a circuit breaker: per service, per host, or per

method. We refer to this property as sensitivity.
Academic work has touched on the topic of circuit breaker

testing. Heorhiadi et al. [30] proposed a fault injection tool,

Gremlin, that can verify the correct operation of a circuit

breaker given a specification of precisely what RPCs should

be prevented when in the open state. Meiklejohn et al. [37]
proposed a strategy for identifying when circuit breakers

were open using a novel indexing scheme for RPCs.

9 CONCLUSION
In this paper, we examined the use of circuit breakers to un-

derstand how application design influenced the effectiveness

of circuit breakers for fault tolerance. To do this, we used

two case studies. These case studies were inspired by both

industrial use cases and outages experienced at DoorDash, a

large food delivery platform.

We determined that not only are existing circuit breaker

designs insufficient for fault tolerance, but identified how

small common abstraction changes in application code can

drastically alter how circuit breakers work. To address these

deficiencies, we proposed two new designs for circuit break-

ers and envisioned how they could be implemented today.



Method Overloading the Circuit SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES
[1] 2021. Audible. https://www.audible.com. Accessed: 2021-05-21.

[2] 2022. Building a gRPC Client Standard with Open Source to Boost

Reliability and Velocity. https://doordash.engineering/2021/01/12/

building-a-grpc-client-standard-with-open-source/. Accessed: 2022-

06-05.

[3] 2022. Circuit breaker — Akka documentation. https://doc.akka.io/docs/

akka/current/common/circuitbreaker.html. Accessed: 2022-06-05.

[4] 2022. Circuit breaker — Armeria documentation. https://armeria.dev/

docs/client-circuit-breaker/. Accessed: 2022-06-05.

[5] 2022. Circuit Breaking with Envoy. https://blog.turbinelabs.io/circuit-

breaking-da855a96a61d. Accessed: 2022-06-05.

[6] 2022. Future-proofing: How DoorDash Transitioned from

a Code Monolith to a Microservice Architecture. https:

//doordash.engineering/2020/12/02/how-doordash-transitioned-

from-a-monolith-to-microservices/. Accessed: 2022-06-05.

[7] 2022. GitHub: App-vNext/Polly. https://github.com/Comcast/jrugged.

Accessed: 2022-06-05.

[8] 2022. GitHub: Comcast/jrugged. https://github.com/Comcast/jrugged.

Accessed: 2022-06-05.

[9] 2022. GitHub: danielfm/pybreaker. https://github.com/danielfm/

pybreaker. Accessed: 2022-06-05.

[10] 2022. GitHub: envoyproxy/envoy. https://github.com/envoyproxy/

envoy. Accessed: 2022-06-05.

[11] 2022. GitHub: fabfuel/circuitbreaker. https://github.com/fabfuel/

circuitbreaker. Accessed: 2022-06-05.

[12] 2022. GitHub: filibuster-testing/filibuster-corpus. https://github.com/

filibuster-testing/filibuster-corpus. Accessed: 2022-09-20.

[13] 2022. GitHub: kubernetes/kubernetes. https://github.com/kubernetes/

kubernetes. Accessed: 2022-06-05.

[14] 2022. GitHub: Netflix/Hystrix. https://github.com/Netflix/Hystrix.

Accessed: 2022-06-05.

[15] 2022. GitHub: rubyist/circuitbreaker. https://github.com/rubyist/

circuitbreaker. Accessed: 2022-06-05.

[16] 2022. Hystrix : How to implement fallback and circuit breaker. https:

//medium.com/@kullik2/hystrix-how-to-e41cabf34d40. Accessed:

2022-06-05.

[17] 2022. Implementing a Circuit Breaker with Resilience4j. https://

reflectoring.io/circuitbreaker-with-resilience4j/. Accessed: 2022-06-

05.

[18] 2022. resilience4j. https://resilience4j.readme.io/docs/examples. Ac-

cessed: 2022-06-05.

[19] 2022. Using Fault Injection Testing to Improve DoorDash Reliabil-

ity . https://doordash.engineering/2022/04/25/using-fault-injection-

testing-to-improve-doordash-reliability/. Accessed: 2022-06-05.

[20] 2022. Wikipedia: Circuit breaker. https://en.wikipedia.org/wiki/

Circuit_breaker. Accessed: 2022-06-05.

[21] 2022. Wikipedia: Rolling blackout. https://en.wikipedia.org/wiki/

Rolling_blackout. Accessed: 2022-06-05.

[22] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic

Mapping Study in Microservice Architecture. In 2016 IEEE 9th Inter-
national Conference on Service-Oriented Computing and Applications
(SOCA). 44–51. https://doi.org/10.1109/SOCA.2016.15

[23] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Mi-

croservices Architecture Enables DevOps: Migration to a Cloud-Native

Architecture. IEEE Software 33, 3 (2016), 42–52. https://doi.org/10.

1109/MS.2016.64

[24] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A Tam-

burri, and Theo Lynn. 2018. Microservices migration patterns. Soft-
ware: Practice and Experience 48, 11 (2018), 2019–2042.

[25] Huamin Chen and P. Mohapatra. 2002. Session-based overload control

in QoS-aware Web servers. In Proceedings.Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, Vol. 2.
516–524 vol.2. https://doi.org/10.1109/INFCOM.2002.1019296

[26] L. Cherkasova and P. Phaal. 2002. Session-based admission control: a

mechanism for peak load management of commercial Web sites. IEEE
Trans. Comput. 51, 6 (2002), 669–685. https://doi.org/10.1109/TC.2002.

1009151

[27] Cleber Jorge Lira de Santana, Brenno de Mello Alencar, and Cássio

V. Serafim Prazeres. 2019. Reactive Microservices for the Internet of

Things: A Case Study in Fog Computing. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (Limassol, Cyprus)

(SAC ’19). Association for Computing Machinery, New York, NY, USA,

1243–1251. https://doi.org/10.1145/3297280.3297402

[28] Falahah, Kridanto Surendro, and Wikan Danar Sunindyo. 2021. Circuit

Breaker in Microservices: State of the Art and Future Prospects. IOP
Conference Series: Materials Science and Engineering 1077, 1 (feb 2021),

012065. https://doi.org/10.1088/1757-899x/1077/1/012065

[29] Martin Fowler. 2014. Circuit Breaker. https://martinfowler.com/bliki/

CircuitBreaker.html.

[30] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K.

Reiter, and Vyas Sekar. 2016. Gremlin: Systematic Resilience Testing of

Microservices. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). 57–66. https://doi.org/10.1109/ICDCS.

2016.11

[31] Kjell Jørgen Hole. 2016. Anti-fragile Cloud Solutions. Springer Interna-
tional Publishing, Cham, 47–56. https://doi.org/10.1007/978-3-319-

30070-2_5

[32] Christina Terese Joseph and K Chandrasekaran. 2019. Straddling the

crevasse: A review of microservice software architecture foundations

and recent advancements. Software: Practice and Experience 49, 10
(2019), 1448–1484.

[33] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. 2018. Challenges

When Moving from Monolith to Microservice Architecture. In Current
Trends in Web Engineering, Irene Garrigós and Manuel Wimmer (Eds.).

Springer International Publishing, Cham, 32–47.

[34] James Lewis and Martin Fowler. 2014. Microservices: a definition of

this new architectural term. MartinFowler. com 25 (2014), 14–26.

[35] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhi-

hao Shan, Jinfeng Shen, and Muhammad Ali Babar. 2021. Understand-

ing and addressing quality attributes of microservices architecture: A

Systematic literature review. Information and Software Technology 131

(2021), 106449. https://doi.org/10.1016/j.infsof.2020.106449

[36] Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather

Miller, and Rohan Padhye. 2021. Service-Level Fault Injection Testing.

In Proceedings of the ACM Symposium on Cloud Computing (Seattle,

WA, USA) (SoCC ’21). Association for Computing Machinery, New

York, NY, USA, 388–402. https://doi.org/10.1145/3472883.3487005

[37] Christopher S. Meiklejohn, Rohan Padhye, and Heather Miller. 2022.

Distributed Execution Indexing. arXiv:2209.08740 [cs.DC]

[38] Nabor C. Mendonca, Carlos M. Aderaldo, Javier Camara, and David

Garlan. 2020. Model-Based Analysis of Microservice Resiliency Pat-

terns. In 2020 IEEE International Conference on Software Architecture
(ICSA). 114–124. https://doi.org/10.1109/ICSA47634.2020.00019

[39] Pieter J. Meulenhoff, Dennis R. Ostendorf, Miroslav Živković, Hen-

drik B. Meeuwissen, and Bart M. M. Gijsen. 2009. Intelligent Overload

Control for Composite Web Services. In Service-Oriented Computing,
Luciano Baresi, Chi-Hung Chi, and Jun Suzuki (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 34–49.

[40] Fabrizio Montesi and Janine Weber. 2016. Circuit breakers, discovery,

and API gateways in microservices. arXiv preprint arXiv:1609.05830
(2016).

https://www.audible.com
https://doordash.engineering/2021/01/12/building-a-grpc-client-standard-with-open-source/
https://doordash.engineering/2021/01/12/building-a-grpc-client-standard-with-open-source/
https://doc.akka.io/docs/akka/current/common/circuitbreaker.html
https://doc.akka.io/docs/akka/current/common/circuitbreaker.html
https://armeria.dev/docs/client-circuit-breaker/
https://armeria.dev/docs/client-circuit-breaker/
https://blog.turbinelabs.io/circuit-breaking-da855a96a61d
https://blog.turbinelabs.io/circuit-breaking-da855a96a61d
https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/
https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/
https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/
https://github.com/Comcast/jrugged
https://github.com/Comcast/jrugged
https://github.com/danielfm/pybreaker
https://github.com/danielfm/pybreaker
https://github.com/envoyproxy/envoy
https://github.com/envoyproxy/envoy
https://github.com/fabfuel/circuitbreaker
https://github.com/fabfuel/circuitbreaker
https://github.com/filibuster-testing/filibuster-corpus
https://github.com/filibuster-testing/filibuster-corpus
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/Netflix/Hystrix
https://github.com/rubyist/circuitbreaker
https://github.com/rubyist/circuitbreaker
https://medium.com/@kullik2/hystrix-how-to-e41cabf34d40
https://medium.com/@kullik2/hystrix-how-to-e41cabf34d40
https://reflectoring.io/circuitbreaker-with-resilience4j/
https://reflectoring.io/circuitbreaker-with-resilience4j/
https://resilience4j.readme.io/docs/examples
https://doordash.engineering/2022/04/25/using-fault-injection-testing-to-improve-doordash-reliability/
https://doordash.engineering/2022/04/25/using-fault-injection-testing-to-improve-doordash-reliability/
https://en.wikipedia.org/wiki/Circuit_breaker
https://en.wikipedia.org/wiki/Circuit_breaker
https://en.wikipedia.org/wiki/Rolling_blackout
https://en.wikipedia.org/wiki/Rolling_blackout
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/INFCOM.2002.1019296
https://doi.org/10.1109/TC.2002.1009151
https://doi.org/10.1109/TC.2002.1009151
https://doi.org/10.1145/3297280.3297402
https://doi.org/10.1088/1757-899x/1077/1/012065
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1007/978-3-319-30070-2_5
https://doi.org/10.1007/978-3-319-30070-2_5
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1145/3472883.3487005
https://arxiv.org/abs/2209.08740
https://doi.org/10.1109/ICSA47634.2020.00019


SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Meiklejohn et al.

[41] Fabrizio Montesi and Janine Weber. 2018. From the Decorator Pattern

to Circuit Breakers in Microservices. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing (Pau, France) (SAC ’18). As-
sociation for Computing Machinery, New York, NY, USA, 1733–1735.

https://doi.org/10.1145/3167132.3167427

[42] Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi.

2020. Design principles, architectural smells and refactorings for

microservices: a multivocal review. SICS Software-Intensive Cyber-
Physical Systems 35, 1 (2020), 3–15. https://doi.org/10.1007/s00450-

019-00407-8

[43] Aashay Palliwar and Srinivas Pinisetty. 2022. Using Gossip Enabled

Distributed Circuit Breaking for Improving Resiliency of Distributed

Systems. In 2022 IEEE 19th International Conference on Software Archi-
tecture (ICSA). 13–23. https://doi.org/10.1109/ICSA53651.2022.00010

[44] Dewmini Premarathna and Asanka Pathirana. 2021. Theoretical frame-

work to address the challenges in Microservice Architecture. In 2021
International Research Conference on Smart Computing and Systems
Engineering (SCSE), Vol. 4. IEEE, 195–202.

[45] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-End Arguments

in System Design. ACM Trans. Comput. Syst. 2, 4 (nov 1984), 277–288.
https://doi.org/10.1145/357401.357402

[46] Mohammad Reza Saleh Sedghpour, Cristian Klein, and Johan Tordsson.

2021. Service Mesh Circuit Breaker: From Panic Button to Performance

Management Tool. In Proceedings of the 1st Workshop on High Avail-
ability and Observability of Cloud Systems (Online, United Kingdom)

(HAOC ’21). Association for Computing Machinery, New York, NY,

USA, 4–10. https://doi.org/10.1145/3447851.3458740

[47] Kridanto Surendro, Wikan Danar Sunindyo, et al. 2021. Circuit Breaker

in Microservices: State of the Art and Future Prospects. In IOP Confer-
ence Series: Materials Science and Engineering, Vol. 1077. IOP Publishing,
012065.

[48] Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane El

Boussaidi, Jean Privat, and Yann-Gaël Guéhéneuc. 2020. On the Study

of Microservices Antipatterns: A Catalog Proposal. In Proceedings
of the European Conference on Pattern Languages of Programs 2020
(Virtual Event, Germany) (EuroPLoP ’20). Association for Computing

Machinery, New York, NY, USA, Article 34, 13 pages. https://doi.org/

10.1145/3424771.3424812

[49] H. Tucker, L. Hochstein, N. Jones, A. Basiri, and C. Rosenthal. 2018.

The Business Case for Chaos Engineering. IEEE Cloud Computing 5,

03 (may 2018), 45–54. https://doi.org/10.1109/MCC.2018.032591616

[50] J. A. Valdivia, A. Lora-González, X. Limón, K. Cortes-Verdin, and J. O.

Ocharán-Hernández. 2020. Patterns Related to Microservice Architec-

ture: a Multivocal Literature Review. Programming and Computer Soft-
ware 46, 8 (2020), 594–608. https://doi.org/10.1134/S0361768820080253

[51] Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel Bittman, and

Peter Alvaro. 2021. 3MileBeach: A Tracer with Teeth. In Proceedings
of the ACM Symposium on Cloud Computing. 458–472.

[52] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,

Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for

Scaling WeChat Microservices. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for

Computing Machinery, New York, NY, USA, 149–161. https://doi.org/

10.1145/3267809.3267823

https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1109/ICSA53651.2022.00010
https://doi.org/10.1145/357401.357402
https://doi.org/10.1145/3447851.3458740
https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1109/MCC.2018.032591616
https://doi.org/10.1134/S0361768820080253
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

	Abstract
	1 Introduction
	2 Background: Microservices
	2.1 Audible
	2.2 DoorDash

	3 Circuit Breakers
	3.1 Taxonomy Construction
	3.2 Taxonomy
	3.3 DoorDash
	3.4 Takeaways

	4 Case Study #1: Indirection
	4.1 Adding Circuit Breakers
	4.2 Increasing Sensitivity

	5 Case Study #2: Nondeterminism
	5.1 Adding Circuit Breakers

	6 Implications
	6.1 Proposed Implementations

	7 Open Challenges
	8 Related Work
	9 Conclusion
	References

