Resilient Microservice Applications, by
Design, and without the Chaos

Christopher S. Meiklejohn
CMU-S3D-24-104
May 2024

Software and Societal Systems
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Heather Miller, Chair
Claire Le Goues

Rohan Padhye
Peter Alvaro (University of California, Santa Cruz)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2024 Christopher S. Meiklejohn

This research was sponsored by the Booz Allen Hamilton award, a Software Engineering Education
Fund fellowship, first year funding from the Dean and S3D departmental funding from the Software
and Societal Systems Department in the School of Computer Science at Carnegie Mellon University.
The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: fault prevention, fault injection, fault tolerance, microservice archi-
tectures, microservices, testing, circuit breakers, remote procedure call, RPC

Abstract

Fault injection testing is vital for assessing the resilience of distributed mi-
croservice applications against infrastructure and downstream service failures.
Typically performed in production, where customers may be adversely affected
by this testing, it often fails to identify application bugs, particularly infrequent
ones or those which only affect a subset of customers. While academics rec-
ognize the problem of resilience bug detection, in development, and prior to
deployment of application code to production, their research has been limited
by access to industrial applications, which has resulted in solutions that may or
may not be fully aligned with the industry’s needs.

This dissertation demonstrates that these types of resilience bugs can be
identified during development, and before deployment of application code to production,
through the use of a developer-centric fault injection technique and a principled
approach to microservice application testing. It then demonstrates that it can
be done in a manner that does align with industrial practitioner’s needs by
co-evolving this fault injection technique and principled approach with an
industrial partner, one of the largest food delivery services in the United States,
which results in the discovery of deep, previously undiscovered, resilience bugs
in their application.

This dissertation begins by first constructing a microservice application
corpus and introducing a novel tracing technique that captures all inter-service
communication in a microservice application. Combined with the corpus, this
tracing technique enables the development of an exhaustive fault injection
testing technique designed specifically for microservice environments. This
technique is then refined by implementing a novel test case reduction strategy
to minimize the exploration of redundant fault injection scenarios, thereby
increasing the performance and usability of the technique. The practicality of
these techniques is then validated using a case study taken from an industrial
microservice application. While this case study confirms the fault injection
technique’s effectiveness, it both highlights deficiencies in the application of
the technique and identifies emergent behavior that is inherent to industrial mi-
croservice applications and their piecemeal approach to application resilience.
These observations inform the design of a new principled approach for testing
microservice applications for resilience, which extends the fault injection tech-
nique’s usability by ensuring that developers write tests for their applications
that are sufficient for bug identification.

With this principled approach, it is shown that deep, previously undiscov-
ered, resilience bugs can be identified in large-scale, industrial microservice
applications, in development, and before code ships to production.

iii

For argvo.

Acknowledgements

“This has all been wonderful, but now I'm on my way.”

Anastasio & Marshall, Down with Disease

First, I want to thank my parents, Deborah (i.e., Meiklemom) and Gordon for
first introducing me to the Commodore 64 at the age of (probably) 4, and their
continued support when I quit college to take an “Internet” job. I especially want to
thank them for their continued support when I quit my senior software engineering
job to go to graduate school and the many Hitchcock marathons, every Christmas
on the Criterion Channel: essential for avoiding the ever-present threat of graduate
school burnout. Most notably, they only complained once that I spent all summer
on IRC as a teenager — when they threatened to send me to a summer camp which,
thankfully, never happened — if it had, I would not be writing this today. Thanks
to my sister, Haley, for all of the laughs and bad 80’s music videos we have shared
over the years.

Greg and Laura, what can I say? You both have been in my life for almost as
long as I have been working on computers professionally. You have both been great
friends, and I hope that we can continue to rock out to many live Goose shows
together for many more years to come everywhere between Boston and Pittsburgh,
and beyond.

Thanks to all of my former colleagues at Basho Technologies who both mentored
and pushed me from a mere JavaScript developer to a accomplished, published
Erlang developer: including, but not limited to: Joe Blomstedt, Russell Brown, Tanya
Cashorali, Sean Cribbs, Reid Draper, Joe Devivo, Bryan Fink, Scott Fritchie, Andy
Gross, Jon Meredith, Jared Morrow, John Muellerleile, Tom Santero, Justin Sheehy,
Brian Sparrow, Andrew Stone, Andrew Thompson, Seth Thomas, Steve Vinoski,
Jordan West, Ryan Zezeski, any many more. We had some extreme times, we worked
so hard, but never once did it feel like work. Not only did you teach me distributed
systems, you taught me to build robust, tested, distributed systems and that formed
the foundation of this dissertation. You also gave me the first opportunity to speak,

v

vi Acknowledgements

on a large stage, on what I was working on, giving me the visibility I needed to
start a blog and actually pursue my Ph.D. Thanks to everyone who was tangential
to Basho Technologies in the actor space: Jamie Allen, Reuben Bond, Jonas Boner,
Sergey Bykov, Roland Kuhn, Philipp Haller, Martin Odersky, and David Pollak.
Thanks to everyone at Boundary: C. Scott Andreas, Kyle Kingsbury, Cliff Moon and
many others.

Thanks to everyone at Erlang Solutions (and beyond, but in arms reach) for
support during my dissertation. Thanks to Francesco Cesarini, John Hughes, Kon-
stantinos Sagonas, Eric Stenman, and Ulf Wiger for their support during my testing
journey with all things Erlang. Thanks to all the organizers of Erlang Workshop,
Erlang User Conference, and Erlang Factory for helping me get established as a
conference presenter, instrumental in my development as a conference speaker.

Thanks to everyone in the Clojure “house”: but, most notably Chas Emerick,
and Zach Tellman. Zach, you've been a great sounding board for ideas and have
always helped me critically think through ideas.

Ben, thanks for all of the great times in Seattle (Pearl Jam!) the great meals, and
just generally being a great friend.

Thanks to everyone in the SyncFree consortium for teaching me how to do
industrial research, but especially: Carlos Baquero, Annette Bieniusa, Carla Ferreria,
Marc Shapiro, Nuno Pregucia. Carla, I am sorry that I still have your copy of TAPL,
and I promise to return it to you personally if I ever return to Lisbon for a conference.
Thanks to all of my fellow graduate student colleagues: Deepthi Devaki Akkoorath,
Manuel Bravo, Maryam Dabaghchian, Zhongmaio Li, and many others.

Ale, my SyncFree “workshop brother”, this would not have been possible without
you. Our times together across Europe and throughout several Microsoft Research
internships was one of the highlights of my entire Ph.D. experience and, despite the
constant friendly bickering, are undoubtedly some of the best moments of my life.
I only wish I could celebrate my Ph.D. defense along the banks of the Seine with
wine, cheese, and bread with you, as we did for your Ph.D. defense.

Thank you to both my mentors and collaborators I had during my time at Mi-
crosoft Research: Tom Ball, Phil Bernstein, Sebastian Burckhardt, and Jonahthan
Goldstein. I think quite fondly of our summers together as some of the best times I
had during my Ph.D. experience. Phil, if you are reading this, I still owe you a copy
of your own book that I destroyed with a ill-placed cup of water.

Thanks to all of the academic folks along the way who helped me out either
prior to or after I started my Ph.D., but most especially: Peter Bailis, Neil Conway,
Pat Helland, Joe Hellerstein, Lindsay Kuper, and Jean Yang.

Thanks to so many folks at Berklee College of Music for giving me the chance to
be a programmer: Cliff Anderson, Chris Giroir, Matt Horan, John Mileham, Patrick
McNeill, and Robert Green. Thanks to my colleagues at Swipely for bootstrapping

vii

and supporting my journey on software testing and getting me to my first software
conerence: Anthony Accardi, Barnaby Claydon, Bright Fulton, Matt Gillooly, Simon
Hojberg, and Joshua Napoli.

Thanks to all of my current colleagues for their support throughout my Ph.D.:
Moustafa Aly, Matt Anger, Armando Canals, Maggie Fang, Justin Lee, Venkatara-
manan Kuppuswamy, Aaron Livingstone, Ivy Liu, Amy Lu, Lev Neiman, Ivan
Radakovic, Patrick Salami, Abhishek Sharma, Radha Krishna Ratnala, Ryan Sokol,
Matt Zimmerman, and many others. Special thanks to Cesare Celozzi for his men-
torship, help with understanding how all the pieces matter, and being such an great
colleague and friend over the past two years.

Thanks to Sargun Dhillon, Julia Fusco, Mike King, Caitie McCaffery, Tyler Mc-
Mullen, Carin Nuernberg, Genevieve Patterson, Martine Roudaire-Clipet, Ines
Sombra, and Ashley Williams.

Thanks to my first set of Ph.D. advisors, Peter Van Roy and Rodrigo Rodrigues.
While the situation may not have been logistically ideal, you helped to guide me to
the right path on how to finish this Ph.D. Thanks to Matthias Felleisen for being a
supportive mentor, who I had no affiliation with, but was always open to talk about
interesting ideas and support me during my Ph.D journey.

Thanks to all of my colleagues at Carnegie Mellon University: specifically,
Jonathan Aldrich, who helped get me into program analysis; Ben Titzer, for all
of your horrible sci-fi movie recommendations; Elizabeth Gilbert, for asking good
questions about fault injection; Matthew Weidner, for carrying the CRDT torch after
I burned the bridge that I crossed with it; and Michael Hilton for all of his help on
becoming a better teacher. Thanks to all the staff, but most notably: Aaron Caldwell,
Connie Herold, and Dabney Schlea.

Zeeshan, boy, we we had some times. Thanks for being there as a sounding
board for many years during my period with our late night “Butterjoint” sessions. I
wish you the best in your own Ph.D. and wish you great success.

Thanks to Michael Issac Assad, Eunice Chen, Andrea Estrada, Lydia Stark, Yiwen
Song, Haoyang Wu, and Peter Zhong for their work on Filibuster. Michael, your
work on extending Filibuster for database testing helped make Filibuster stronger
and improve its own foundations.

Matt, thanks for being such a great friend and colleague. Obviously, and as you
know, before we were colleagues we had some great times together. I still recall
one night many years ago, in San Francisco, when you were pondering if “parallel
grep” was a good interview question and asking everyone if they could solve it.
Since then, we recorded music together, debugged distributed applications together,
and now work on keeping those distributed systems reliable through testing and
improved microservice designs.

viii Acknowledgements

Thanks to my committee for their support: Rohan, Claire, and Peter. Rohan, you
carried to torch on helping get Distributed Execution Indexing over the line and I
appreciate that. Claire, you helped to solidify things and keep my thesis grounded
(and, within time, I hope.)

Peter, I'm not even sure what to say. Our relationship started as two random
folks who met at a bar in the Tenderloin for a beer because a mutual friend said we
should. Since then, it’s progressed from friend, to almost being your first student,
to you being a member of my thesis committee. We have spent many hours talking
both in bars and on the phone about distributed systems, to discussing research
directions, and finally my dissertation. I consider you a great friend and one of the
best memories in my life is meeting you at Magnolia in the Haight for lunch and
hanging out in the Panhandle after talking nothing but crazy distributed systems
research ideas. I only hope to continue our relationship for many more years.

Last, and (obviously) not least, my advisor Heather. Heather, we have known
each other for a very long time now: even before you were a professor, at summer
school in Oregon, ten years ago! First off, I cannot thank you enough for getting me
involved in Curry On organization, which helped me to meet many people who
were very valuable to both my industrial and academic career(s). When I finally
quit Basho due to bad circumstance, you helped me find possible job opportunities,
and when my first Ph.D. was not going well, you helped me find a way out by
getting me admitted to Northeastern. Then, we ended up at Carnegie Mellon, and
when I arrived at Pittsburgh, you and Daniel found me a place to stay until I was
able to find my own footing. Since then, we have had a lot of laughs and have done
a lot of valuable, high-impact, work and I cannot thank you enough. I would not be
here if it was not for you.

To everyone else not mentioned here: I apologize. It has been 10 years since
I started down the path of graduate school, and a decade is a long time where
one does not remember everyone who contributed to one’s life. I barely remember
everything that has happened myself.

Contents

Acknowledgements
Contents

1 Introduction

1.1 ThesisStatement
1.2 Contributions o o
1.3 Outline e
2 Background and Related Work
21 Background o o
2.1.1 Microservice Architectures
2.1.2 Fault, Failures, and Errors in Microservices
213 Faultlnjection,
22 RelatedWork
221 Industrial Practices
222 Academic Literature
23 Takeaways e
3 Microservices: Dependency Types
3.1 Audible: Hard Dependencies
3.1.1 Application Structure o o000
3.1.2 Application Behavior,
3.2 Netflix: Hard and Soft Dependencies
3.21 Application Structure Lo Lo Lo L
3.2.2 Application Behavior o L.
33 Takeaways

4 Microservice Application Corpus
41 CinemaExamples o 0.

ix

X

Contents

42 Industry Examples
421 Audible.
422 Expedia. oo
423 Mailchimp
424 Netflix

43 Takeaways

Distributed Execution Indexing
5.1 Algorithm Requirements
5.2 Synchronous Distributed Execution Indexing
521 Signatures Are Too Coarse-Grained
5.2.2 Increasing Granularity: Invocation Count or Call Stack
5.2.3 Increasing Granularity: Path to Invoking RPC
5.3 Asynchronous Distributed Execution Indexing
54 Implementation o L.
541 Debugging Representation.
54.1.1 Projection and Partial Orders
5.4.2 Verbose and Compact Representations
543 Assignment oL
55 Takeaways

Service-level Fault Injection Testing
6.1 Overview e
6.2 Algorithm L
6.3 Fault Injection Predicates
6.4 TestingProcess.
6.5 Encapsulated Service Reduction
6.5.1 Service Encapsulation,
6.52 Algorithm o oL
6.6 Takeaways

Evaluating SFIT: Corpus

7.1 Experimental Configuration

7.2 Distributed Execution Indexing
7.2.1 Required: Invocation Count, Stack, and Path
7.2.2 NondeterminismisaProblem
7.2.3 Payload Inclusion Distinguishes

7.3 Service-level Fault Injection Testing
7.3.1 Tests Generated and Increased Coverage
7.3.2 Encapsulated Service Reduction

10

11

Contents xi

733 Mocks ... 90
734 ExecutionTime, 90
7.3.5 Misconfigured Timeouts 91
74 Takeaways 92
Industrial Microservices: Foodly 93
81 Foodly 94
8.2 How Foodlyis Resilient ToFaults 94
8.3 Why Not Chaos Engineering? 95
8.4 How Changes at Foodly are Tested 96
85 Takeaways 97
Evaluating SFIT: In Practice 99
9.1 Philosophical Challenges 99
9.2 ResultsOverview 100
9.3 Experimental Configuration 102
931 ComponentTests 102
9.3.2 Re-implementing FILIBUSTER 103
933 Enabling FILIBUSTER 106
934 Configuring FILIBUSTER 106
9.4 Socio-Technical Challenges 108
9.4.1 Education and Documentation 109
9.4.2 Development Processes 109
95 Results 110
9.6 Takeaways e 114
Microservices: Dependency Type Evolution 117
10.1 Application Structure Lo oo oo 117
10.2 Hard Dependencies 120
10.3 Soft Dependencieso oo 120
10.4 Latent ResilienceBugs 121
10.5 Takeaways e 122
Principled Service-level Fault Injection Testing 123
11.1 Overview of p-SFIT Approach 125
11.2 Components of p-SFIT, 127
11.2.1 Structured Test Interface 129
11.2.2 Behavior-Under-Fault Encoding APT 129
11.2.3 Compositional Reasoning 130

1124 IDEPlugino 132

xii

12

Contents

11.3 Implementation
11.3.1 Failure Specification API
11.3.2 FaultMatching APT
1133 IDEPlugin
11.3.4 p-SFIT Testing Procedure

11.3.4.1 Hard Dependency Subprocedure
11.3.4.2 Soft Dependency Subprocedure

114 Takeaways i i e

Conclusions

12.1 Takeawayso e
12.2 DisCUuSSION . . . v v v v o e e e e e e e e e e e e e e
123 Conclusion e e e

Using p-SFIT: A Tutorial

Al Single Adjustment Example
A.1.1 setupBlock: Perform TestSetup
A.1.2 stubBlock: Stub Downstream Dependencies
A.1.3 executeTestBlock: Write the Functional Test
A.14 assertTestBlock: Perform Test Assertions
A.1.5 assertStubBlock: Verify Stub Invocations
A.1.6 teardownBlock: Perform Test Teardown
A.1.7 failureBlock: Application Failure Behavior

A.2 Multiple Adjustment Example o0 L.
A2.1 Updating the Happy PathTest.
A.2.2 Updating the Application’s Failure Behavior

A.3 Adding Another Soft Dependency

A4 Takeaways

B Availability

List of Figures

List of Tables

List of Definitions

Bibliography

180

182

183

185

Chapter 1

Introduction

“Without love in the dream, it’ll never come true.”

Garcia & Hunter, Help On The Way

Microservice architectures are currently the dominant architectural style for
most consumer products and services | ; ; ;]. This style
involves breaking down applications into various services, addressing the needs of
large-scale development organizations. The primary aim is to enable developers to
rapidly iterate on complex applications, often comprising millions of lines of code,
while working independently at their own pace |].

Structurally, microservice architectures resemble monolithic ones, where the
application is divided along module boundaries, termed services. In microservice
architectures, these services interact through Remote Procedure Calls (RPC) across
a network instead of method invocations within a single codebase as in monolithic
architectures. A critical difference introduced by microservice architectures is the
concept of partial failure. This occurs when a service the application relies on is down
or unavailable during a customer request. Developers of these applications must,
therefore, consider and manage these failure scenarios [;]

To assess how microservice applications behave under fault, industry practi-
tioners increasingly use coarse-grained fault injection experiments on microservice
applications deployed in production, such as chaos engineering []. This pro-
cess involves introducing low-level, infrastructure-specific faults (e.g., dropping
network connections or crashing nodes) into the application and monitoring ap-
plication metrics to see if these faults negatively affect the customer experience.
However, this approach has several significant drawbacks:

1. Latent Defects Admitted.
First, this approach admits latent defects into an application that will be de-

1

2 Introduction

ployed into production. These defects may then later be activated and ad-
versely affect the customer experience before discovery through fault injection
experimentation, if performed at all.

2. Cost-Prohibitive Experimentation.
Second, with microservice applications growing to hundreds to thousands of
services, with single end-to-end customer requests containing upwards of 100
RPCs, exhaustiveness becomes cost-prohibitive, as most approaches used by
practitioners today rely on manually designed and executed experiments.

3. Ambiguous “Correct” Application Behavior.
Third, and finally, any approach based on experimentation where metrics
are observed for bug detection will be insufficient when the metrics are not
designed specifically to capture possible latent application bugs. In short,
coarse-grained application metrics cannot be used as a replacement for actual
assertions on the expected behavior of the application.

These problems are far from understood by academic researchers; however, pre-
vious research on solving these problems does exist. To demonstrate, one example
is provided for each of the drawbacks of the experimentation approach.

1. Latent Defects Admitted.

Heorhiadi et al. |] explored testing microservice applications, in their
entirety, in a development environment where faults could be injected freely to
identify resilience bugs in microservice applications. However, their approach
required that application developers specify internal behavior of the system
under fault: for example, how many times a request would be retried under
fault. In short, instead of verifying application behavior as a result of the
fault, the application is checked for both the presence and correct operation
of internal resilience mechanisms: it leaves open the question of what the
application does when these resilience mechanisms do not work (i.e., RPC
retry fails.)

2. Cost-Prohibitive Experimentation.

Alvaroetal. | | proposed a smarter approach to exploration where,
using a specification of the application behavior, fault injections would be
targeted at locations in the application code likely to trigger resilience mech-
anisms and expose application bugs. While this approach was mechanized
at scale [], it still relied on specifications written in a specific speci-
tication language outside of the reach of application developers working on
new application features. In short, it shifts the burden of manually creating
experiments to creating the specifications that will be checked.

Thesis Statement 3

3. Ambiguous “Correct” Application Behavior.

Zhang et al. |] proposed an approach whereby each location where
an RPC was made would be automatically subject to a fault injection through
automatic test generation. However, this approach relies on the application
developer specifically encoding, for each test, if the local application state in
the service itself would either be the same, different, or some derivative state
when a fault was not injected. In short, if no local application state change
were performed due to RPC execution, these faults would have no impact,
making it possible to miss latent application bugs during testing.

What this previous research, and most of the research on the majority of microser-
vice architectures, suffers from is the lack of an industrial corpus and perspective to
ground the research in how actual industrial microservice applications are designed,
developed, maintained, deployed, and operated | ;]. Therefore,
to move the research in microservice application resilience forward and show that
it is possible to identify latent application bugs related to resilience in development
and before deployment, this dissertation advances the previous work in microser-
vice application resilience through both the design and implementation of a novel
resilience testing technique rooted in actual industrial resilience bugs and a co-
evolution of that technique with an industry partner, Foodly', which operates a
large microservice application comprised of over 500 services behind one of the
largest food delivery service in the United States []

1.1 Thesis Statement

The main goal of this dissertation is to identify latent application bugs, related to
the resilience of microservice applications, in development, and before deployment of
code to production. This should be performed automatically and without requiring
that application developers author a specification, written in a specific specification
language, for the purposes of resilience testing.

The work in this dissertation contributes towards this by taking a developer-centric
approach. First, developers should be able to leverage their existing functional test
suite — the test suite they are already writing when building new features — to
identify bugs using fault injection with minimal additional effort; no other tests or
specifications must be required. Second, when injected faults provoke functional
test failures, application developers should only be required to think of the test
failures in terms of the impact of the fault on application behavior, for example,
as derivations of the fault-free behavior of the application. Third, faults should be

!Name anonymized.

4 Introduction

automatically injected without requiring that application developers manually craft
fault scenarios, avoiding situations where the developer “misses” critical scenarios
due to the overhead in test creation. Fourth, application developers should only have
to run a minimal set of tests for fault scenarios that represent unique, interesting
cases. Fifth, and finally, application developers should be required to think about
the consequences of all injected faults: for example, when a fault has no (observable)
impact, the developer must specifically indicate this is the case to avoid introducing
bugs that are not immediately visible during execution, but may later have some
effect. This naturally leads to the following thesis statement:

Thesis Statement: Identification of latent application bugs related to resilience in
microservice applications, in development, and before deployment of code to production,
is possible using a developer-centric approach and can surface critical application bugs
in large-scale, industrial microservice applications.

1.2 Contributions

To support this statement, this dissertation makes the following contributions:

e Microservice Application Corpus.
To ground this dissertation in industrial applications and their bugs, first,
a corpus is constructed from publicly available information on the internet
concerning resilience bugs in industrial microservice applications.

e Distributed Execution Indexing.
Next, an algorithm called Distributed Execution Indexing (DEI) is presented
for uniquely and deterministically identifying all of the RPCs executed by a
microservice application. This algorithm is fundamental to any fault injection
approach, as it guarantees that under repeated (re-)execution of an end-user
request, any resulting RPC to services inside the microservice application can
be identified the same way.

o Service-level Fault Injection Testing.
Next, a fault injection technique called Service-level Fault Injection Testing (SFIT)
is presented that leverages the existing functional test suite of a microser-
vice application to identify latent bugs related to application resilience. SFIT
leverages DEI as its underlying fundamental technique for performing the
necessary exhaustive search for demonstrating that applications are free from
latent bugs.

Outline 5

e Encapsulated Service Reduction for SFIT.
Then, SFIT is improved upon by applying a dynamic test case reduction strat-
egy, called Encapsulated Service Reduction (ESR), that leverages how microser-
vice applications are designed, structurally. ESR is then shown to make a
significant performance improvement in the execution time of SFIT.

e Industrial Evaluation of SFIT.
From there, a case study is performed at Foodly that demonstrates the weak-
nesses in the SFIT approach. However, despite these weaknesses, SFIT is
shown to identify actual bugs in Foodly’s large-scale industrial microservice
application.

e Principled Service-level Fault Injection Testing.
Next, a new testing process is presented, Principled Service-level Fault Injection
Testing (p-SFIT), which improves on the original design and testing process
of SHFIT that avoids the weaknesses presented by ensuring that developers
know precisely when faults are injected and encode specifically what their
application should do when faults occur.

o FiLiBusTER: Implementation of SFIT and p-SFIT.

Finally, FiLiBUSTER, the open source implementation of both SFIT and p-SFIT
is presented. FiLiBustER is implemented in both Python and Java; supports
Google’s gRPC and Netty’s HITP for RPC; has an associated Intelli] IDE
plugin, and is currently in use by many developers daily at Foodly in their
development and continuous integration workflows. This implementation
serves as the foundation of the evaluations of the techniques and processes
presented in this dissertation. To accompany the implementation, a detailed
tutorial is included on how to apply FiLisustER to an application modeled after
an industrial application scenario discovered containing a bug at Foodly.

1.3 Outline

The remainder of this dissertation is structured as follows:

e Chapter 2 presents both background material on microservice applications
and work directly related to this dissertation. Background material focuses
on microservice architectures and fault injection, each with a rich history. Re-
lated work targets fault injection in microservice applications and distributed
data systems to compare the history and techniques between both types of
distributed applications to highlight the deficiencies inherent in microservice
architecture research.

Introduction

Chapter 3 presents two motivating examples, Audible and Netflix, that demon-
strate the impact of failures on microservice applications and one way that
microservice applications handle those failures. In the case of Audible, any
user request fails if any of the dependent microservices are down: these are
referred to as hard dependencies. In the case of Netflix, fallbacks are used to
“compensate” for failure if a required service is non-responsive or unavailable;
otherwise, the request fails: these are referred to as soft dependencies and are
used to provide graceful degradation in the event of failure.

Chapter 4 presents this dissertation’s first of two foundational components:
a microservice application corpus. This corpus, constructed from publicly
available information on industrial microservice applications, contains eight
(8) small synthetic examples demonstrating common microservice request
patterns and four (4) recreations of industrial microservice applications where
coarse-grained fault injection experimentation was used to identify, or repro-
duce an application bug related to resilience. This corpus is foundational
because it addresses the deficiencies in academic work on microservice re-
silience: a lack of applications that contain resilience bugs or that employ
resilience techniques to evaluate new fault injection techniques.

Chapter 5 presents the second of two foundational components of this dis-
sertation: an algorithm for identifying RPCs in a microservice application.
This algorithm is necessary, as it enables any fault injection technique for
microservice applications to guarantee that an application has been tested
for all possible faults that might occur concerning its downstream dependent
services.

Chapter 6 presents Service-level Fault Injection Testing (SFIT), a technique for
testing microservice applications to identify latent application bugs in devel-
opment before deployment of application code to production. SFIT is one
of two core contributions of this thesis and addresses several of the notable
drawbacks with existing academic techniques by taking a developer-centric
approach. SFIT is then optimized using Encapsulated Service Reduction (ESR).
This test case reduction technique avoids redundant fault injections, where
the application has already executed the same application behavior as a result
of another fault injection.

Chapter 7 presents an evaluation of SFIT on the synthetic microservice applica-
tion corpus presented in Chapter 4. It is demonstrated that SFIT can improve
application coverage by exercising RPC-failure related error handling code
paths and discovering all bugs seeded into the synthetic application corpus.

Outline 7

It is demonstrated that SFIT with ESR outperforms SFIT without avoiding the
execution of redundant test cases.

e Chapter 8 provides an overview of the industrial microservice application be-
hind Foodly, one of the largest food delivery services in the United States. This
section shows how Foodly tests its microservice application, deploys changes,
and remains resilient to faults of downstream microservice dependencies.

e Chapter 9 presents an evaluation of SFIT on the industrial microservice ap-
plication behind Foodly. It is shown that while SFIT can be used to identify
resilience bugs in industrial microservice applications, these may remain un-
detected if developers do not follow the SFIT testing precisely and investigate
both all test failures induced by fault injection and tests that do not fail when
fault injection is not applied. The results of this evaluation are then used to
identify changes in the SFIT process necessary to identify these bugs.

e Chapter 10 presents a new application for contribution to the microservice
application corpus, inspired by actual programming patterns used by mi-
croservice application developers at Foodly. This application demonstrates
how hard dependencies are converted into soft dependencies, where microser-
vice applications employ graceful degradation to avoid suffering from the
impact of faults in production at runtime.

e Chapter 11 presents the design of p-SFIT. p-SFIT improves on SFIT by ensuring
that application developers properly encode their application’s failure behavior
into their functional tests using an integrated testing process with SFIT. p-SFIT
is supported by a new implementation of SFIT with an integrated IDE plugin
that provides application developers with feedback during testing on how to
proceed at each step of the testing process.

e Chapter 12 presents a conclusion to this dissertation and future directions,
some of which have already been and are actively being explored.

Contained in the appendices:

e Appendix A presents a tutorial on using p-SFIT with FiLisuster. As p-SFIT
is mainly a testing process for application developers, this appendix demon-
strates how one can use the testing process to identify an application’s behavior
under fault through interactive prompts and supporting technology.

e Appendix B contains resources on the contributions included in this disserta-
tion, all which are available as open source.

Chapter 2
Background and Related Work

“I have my own methods; but I am human, and every time I see someone else’s
films I may be tempted to try their methods instead of my own. Theirs seem so
logical. I do it, and I fail. Their methods may be good, but not for me.”

Alfred Hitchcock

As it is important to frame this work in the context of the state-of-the-art in
microservice knowledge and fault injection techniques, this chapter presents this
dissertation’s background and related work.

In the background material, it is shown that while microservice applications are
well understood structurally in academic literature, failures within a microservice
application and the potential impact of those failures remain a lesser understood
phenomenon that has only been recently investigated by a limit set of academic
researchers. Itis posited that one possible limiting factor of this is access to industrial
microservice applications.

In the related work material, it is shown that fault injection testing in industry
and academia is converging: practitioners work at the most coarse level where
manual faults are injected in production to identify application bugs, and academic
approaches focus at a granular level where faults are automatically injected on
particular RPC (or messages), in development, and state derivations in applications
are used to detect bugs.

This work is then put in contrast to the rich literature that exists in academia
on testing distributed data systems: where techniques are mechanized, automat-
ically applied, and used to find deep bugs in applications when all services are
homogeneous (i.e., replicas of one another.)

9

10 Background and Related Work

2.1 Background

First, it is essential to understand what the existing research in microservice ar-
chitectures understands about failures in microservice applications. Then, several
methods for injecting faults into microservice applications are presented.

2.1.1 Microservice Architectures

Microservice architectures primarily improve development velocity, as they decom-
pose the application into different services that can be developed independently

by small teams and incrementally deployed as necessar ; ; ;
y y deploy y

; |. However, while microservice architectures have been the subject of
qualitative analysis since the definition of the term in 2014 | | research fails to

identify faults as a significant concern for microservice applications.

Systematic Literature Reviews. Since the proliferation of applications built using
microservice architectures, several systematic literature reviews and mapping stud-
ies have identified the emerging concerns and challenges in microservice application
development. Most of these studies have relied on existing academic research on
microservices.

Pahl & Jamshidi performed a systematic mapping study that examined 21 dif-
ferent publications to identify the emerging concerns of microservice architec-
tures []. Out of the 21 publications studied, failure is only mentioned as a
concern in a single publication.

Alshugayran et al. performed a systematic mapping study of the challenges in
microservice applications using 33 publications []. They identified eight
general challenges as part of their study. Of these 33 publications, 28 directly
mentioned fault tolerance; these were identified using the following keywords:
“fault”, “failure”, “recovery”, “tolerance”, and “healing”. However, the author’s
analysis did not go further than identifying that faults and fault tolerance were
crucial challenges in microservice applications.

Soldani et al. performed a systematic literature study of 51 industrial publications
to identify the pros and cons involved in the design, development, and operation of
microservice applications []. The authors identified failure as an opera-
tional concern for microservice architectures and then further identified one specific
technological pattern, circuit breakers, as a tool that can be used contain failures
when they occur.

Waseem et al. performed a systematic literature study focused on testing mi-
croservice applications comprising of 33 publications |]. Their results demon-
strate that research interest in testing microservice architectures is increasing. How-

Background 11

ever, they only identify a single paper that explicitly tests applications for their
reliability against failure.

Li et al. performed a systematic literature review of 72 publications to identify
the quality attributes associated with microservice architectures |]. The
authors identified availability as one of the primary quality attributes associated
with microservice architectures and used this more general term, availability, to
encompass reliability and fault tolerance. More specifically, they identified an
increasing trend towards using fault monitoring tools and circuit breakers to detect,
react to, and contain failures, thereby increasing the quality attribute of interest:
availability.

Waseem et al. performed a systematic literature study comprising 47 publications
to identify the key themes in the intersection of DevOps practices and microservice
architectures []. This study identified circuit breakers as the predominant
technological pattern for dealing with cascading failures, a significant concern in
microservice architectures that result in outages (10.63%, five studies.)

All these studies indicate microservice resilience has only recently become of
academic interest since the inception of microservices and has not been subject
to in-depth theoretical investigation. Most notably, several papers identified the
circuit breaker pattern as an increasingly useful for pattern for dealing with failures.
This pattern explicitly injects failures into the application to indicate the failure of a
dependency that will no longer be called, further necessitating the need for fault
injection testing, of which little research exists.

Qualitative Methods. As a result of the lack of access to industrial microservice
applications, researchers have resorted to various qualitative methods (e.., case
studies, developer interviews) to study microservice applications.

For example, O’Connor et al. extended a previous research study that identified
the software development processes that the developers of microservice architec-
tures used to understand the situational contexts and factors that drive process
selection []. Leite et al. performed a grounded theory study involving
interviews with 46 professionals to understand how organizations structure them-
selves when building microservice applications |]. Ayas et al. performed a
grounded theory study to investigate the human processes involved in migrating
monolithic application design to microservices []. Sorgalla et al. performed
a comparative multi-case study where interviews were analyzed using a grounded
theory approach to identify the process(es) that were used in small to medium-
sized development organizations when building microservice applications |].
However, outside of some notable exceptions, failure does not appear to be a concern
identified by these studies in any aspect.

12 Background and Related Work

Taibi et al. used semi-structured interviews with 72 microservice application de-
velopers over two years to identify bad practices in the development of microservice-
based systems and understand how they overcame them. Using open and selective
coding, they identified 11 microservice-specific bad smells []. However, only
one of the identified smells is related to reliability: API versioning mismatches
between different services where a service that depends on another might receive
data that it is not expecting.

de Toledo et al. used a case study approach to identify technical debt in mi-
croservice architectures, specifically related to the communications layer, through
document examination and participant interviews at a company that operated 1,000
different services in their microservice architecture |]. Their study revealed
several issues in the communications layer that they believe arose with rapid, de-
centralized development. The authors proposed a solution to these issues and
identified the risks inherent to implementing those solutions.

Wang et al. performed a mixed-methods study that involved 21 practitioner
interviews, with a follow-up online survey of 37 participants that covered 37 differ-
ent companies to identify best practices, challenges, and existing solutions to the
maintenance and operation of microservices | |. While this study acknowl-
edged that failures complicate the maintenance and operation of microservices, the
authors only present recommendations on debugging techniques.

2.1.2 Fault, Failures, and Errors in Microservices

There is little academic research on microservice application faults, failures, and
errors |]. Several authors believe that this is a result of academic researcher’s
limited access to industrial microservice applications [;]. This
is demonstrated by examining the qualitative methods used in recent literature:
for example, analysis of bugs reported on open-source microservice applications,
interviews with industrial microservice developers, and grey literature studies on
microservice testing methodology.

Waseem et al. performed a thematic analysis of 1,345 issues gathered from
5 open source microservice applications on GitHub to build a taxonomy of the
types of problems that occur in microservice applications |]. The authors
acknowledged the limited representation of the data set: specifically, it was restricted
to smaller applications that are open source, but the authors still identify that
communication failures represent 119 out of the 1,345 (8.84%) issues filed. However,
when first starting the application, all the identified issues are around missing or
incorrect configuration. Therefore, there is no discussion of failures resulting from
software defects while the system is running.

Background 13

Zhou et al., to design a combined trace visualizer and visual debugger for mi-
croservice applications, surveyed 16 different developers across 13 other companies
using semi-structured interviews to identify the bugs that they observed in microser-
vice applications |]. They identified 22 different bugs and categorized
them according to a taxonomy based on several criteria: most notably, whether they
are specific to the architecture of microservice applications themselves (5 of 22) or
would be found in more traditional, monolithic application designs. Their taxonomy
draws a strict dichotomy between internal faults, where software defects cause one
or more components of the microservice application to return errors, and interaction
faults, where the unavailability of a dependent service causes the application to
malfunction. One area where this dichotomy is deficient is its consideration of the
intersection of internal and interaction faults, an area discussed in this dissertation.

In short, these papers reflect the state-of-the-art knowledge of why microservice
applications fail but only identify fewer than ten application bugs, many of which
do not result in customer-affecting application outages. Finally, it is essential to note
that all authors have created open-source corpora for future researchers based on
their findings; this is consistent with one of the two recommendations for improving
research in the area [;]

2.1.3 Fault Injection

Fault injection has a rich history in academic research. Here, work that connects to
the techniques used in this dissertation is highlighted.

ORCHESTRA, |], a system for message-level fault injection in distributed
applications, lets the application developer intercept and arbitrarily delay, drop,
or transform messages. GENEsIS2, [] a system for performing fault injection
in service-oriented architectures, an early predecessor of microservices, similarly
supports arbitrary message transformation along with delaying service responses.
FERRARI [| simulates low-level hardware faults by injecting faults in software
and was the first system to identify the benefits of fault injection within different
iterations of loops.

FIG, [| LFI, |] and AFEX [] all perform library-level fault
injection. FIG focuses on glibc. LFI first proposed using static analysis on library
code to identify the possible faults an application should be tested for. While LFI
implements a more advanced analysis (e.g., pointer aliasing, binary analysis), the
authors rely on over-approximation to avoid missing potential faults. AFEX further
extends LFI with a search prioritization strategy for large applications where an
exhaustive search is impossible.

Both ENFORCER [] and CHAOSMACHINE | | perform fault injection
on the JVM. ENrorcer injects checked exceptions to verify the error handling code

14 Background and Related Work

associated with exception handlers. Most of the innovation in this tool is to support
JVM-specific exception models. CHaosMACHINE injects all throwable exceptions and
requires that developers use test annotations to specify how faults should impact the
internal state. In contrast, Fate |] is a fault injector that abstracts the injected
faults to address the state space explosion problem when exploring combinations
of different faults. Its counterpart, Destint |], is a declarative specification
language over abstracted system events for writing the system’s behavioral specifi-
cation. Similar to Destint, LDFI |] is an optimized search strategy that uses
a similar declarative specification language. The challenges of applying LDFI at
Netflix (e.g., specification language, behavioral specification, deterministic replay)
have also been discussed |]

PreFarL [] lets developers inject arbitrary faults and write custom pruning
strategies to reduce test case explosion. SETsupo |] uses high-level, declarative
test specifications over the system state to drive fault injection. GREMLIN [],
is a system for programmatic specification and execution of chaos engineering
experiments in microservice architectures.

2.2 Related Work

This section presents research and industrial practices related to both fault injection
and fault tolerance. While fault injection is the direct focus of this dissertation, it
is essential to frame its discussion within the context of fault tolerance, as fault
tolerance often impacts the type of fault injection techniques chosen when testing
microservice applications for resilience.

This related work is also presented in contrast with research in the same topics
performed on distributed data systems: distributed systems underlying infrastruc-
ture products and not consumer services. These systems are more easily studied due
to their open-source availability, public bug history with fixes, and which typically
implement either one or several well-studied distributed protocols (e.g., Zookeeper
and Zookeeper Atomic Broadcast) or designs (e.g., Apache Cassandra and Amazon’s
Dynamo.)

2.2.1 Industrial Practices

Industrial fault injection and fault tolerance techniques used by the developers
of microservice applications today are first presented. The reason for this is that
practitioners face faults daily and are highly motivated to identify practices that
have a real impact on improving their application’s resilience.

Related Work 15

Fault Injection. Industrial fault injection practices in microservice applications
have been chiefly performed in production on a running application to determine
a system’s tolerance to a given fault. The collection of tools, techniques, and pro-
cesses that support this is colloquially known under the umbrella term of resilience
engineering: a term that has its formal roots in the safety science [Res] community.
It refers to the processes organizations and communities use to adapt and respond
to unanticipated failures.

Game Days, one of the earliest resilience engineering techniques used by practi-
tioners and the spiritual successor of most of the approaches taken by practitioners
today, have been used by Amazon, Google, and Stripe [;] to identify
resilience issues in both their applications and infrastructure. Game Days acknowl-
edges that failure is inevitable at the scale these companies operate. Therefore, they
opt to preemptively trigger failures and explore the organizational response to those
failures. For example, Google discovered through a Game Day exercise that their
monitoring and alerting infrastructure existed only in the data center where they
simulated a power outage. []

Chaos engineering is another resilience engineering technique, initially pio-
neered by Netflix when first moving to the cloud []. The first iteration of
chaos engineering, Netflix’s Chaos Monkey [], randomly terminated instances
in the live production cloud to ensure that Netflix’s applications were resilient
to instance failure: common, in the early iterations of Amazon’s EC2 cloud en-
vironment. Next, Netflix’s Simian Army [;], a collection of tools for
performing different types of fault injection, allowed developers to simulate in-
creased latency and failures of both EC2 availability zones and EC2 regions. Since
then, chaos engineering has evolved into a discipline |] practiced by many
different companies, where its supported by a variety of other open source tools
(e.g., CHaosTooLkiT |], CHAaOSMESH |], CHAOSBLADE |], Litmus [Lit],
LinkepOur [Lin]), books [], community meetups', and commercial software-
as-a-service (SaaS) offerings (e.g., GREMLIN [], HArNESs [Har].)

As a discipline, chaos engineering closely resembles the scientific method: a
hypothesis is formed about what the application will do when faults are injected,
faults are injected in either the entirety of, a subset of, or mirror of production traffic
and the hypothesis is falsified, if possible. Therefore, the key behind the chaos
engineering approach is application observation. In the case of Netflix, the key
performance metric observed during chaos engineering experiments is a metric that
counts the number of movie streams started per second, which varies a little week
over week, making it easy to detect deviations from the norm when running a chaos
experiment. This directly contrasts traditional approaches where a test oracle — a

thttps://chaos.community, now defunct.

https://chaos.community

16 Background and Related Work

source of truth in the test suite that is used identifying application bugs — contains
assertions about the application’s desired behavior.

Netflix has continued to innovate in chaos engineering. Their Failure Injection
Testing (FIT) [| framework, for example, is integrated into the RPC framework
that all of their services use for intra-service communication, allowing them to inject
faults at any RPC site in their microservice application. Their Chaos Automation
Platform (CHAP) [] enables automated failure testing with a minimal blast
radius by automatically spinning up replicas of services where faults will be injected
on a small percentage of their production traffic in the event of a noticeable deviation
from the norm in their key performance indicator, the experiment is automatically
terminated. MoNoCLE [] pushes this even further by examining the RPC
configuration code that is associated with each of their services and automatically
generates chaos experiments that are then automatically run with CHAP. It is im-
portant to note that MoNocLE was recently disabled [[Ret] due to the large number
of experimental configurations generated and the required overhead running those
experiments at scale. Finally, GREMLIN, the chaos engineering SaaS company formed
by former Netflix chaos engineers [], also briefly promoted a product called
“application-level fault injection” (ALFI), where a library-level fault injection ap-
proach was used to provide more granular fault injection with an even smaller blast
radius and errors specific to the library in use. As of 2018, this product is no longer
offered.

Regarding the industrial practices for fault injection in microservice applica-
tions, several interesting observations can be made. First, the adoption of chaos
engineering techniques in practice seems to be related to two critical aspects of
chaos engineering: low-level fault injection and application observation. Low-level
fault injection (e.g., disrupting the network, terminating instances) is extremely low
overhead for developers. For example, GREMLIN [] uses a daemon installed
on the virtual machine instances of each service and requires no modifications to
application code to perform fault injection. Application observation, using key
performance indicators (KPI) or metrics, also has low overhead when compared to
either heavyweight specifications describing the application’s behavior — in enough
detail for mechanical verification — or comprehensive test suites, under fault. These
two key aspects indicate that developers can quickly “try out” chaos engineering
before moving to more advanced fault injection techniques, which has presumably
helped increase the broad adoption that chaos engineering has seen in recent years.

Second, the evolution of chaos engineering tools seems to indicate a desire for
functionality that is traditionally seen in academic approaches: automation, granu-
lar fault injection, and library-level fault injection. For example, MoNoOCLE []
automatically generates chaos experiments from software configuration: this resem-
bles a traditional exhaustive or systematic search commonly found in approaches

Related Work 17

built on some form of model checking. ALFI, the abandoned approach from Grewm-
LIN |], sought to provide fault injection in the libraries that services used for
issuing RPCs and communicating with distributed data systems to allow granular
fault injection with a minimal blast radius and library-specific errors: this resembles
traditional academic library-level fault injection approaches that aim to give devel-
opers confidence in proper API use and error handling of those libraries. However,
both of these more “academic” approaches have failed due to the overhead involved
in more comprehensive, targeted testing.

For example, MonoctE relies on experimentation in production using CHAP to
automatically create clusters with a subset of production traffic for experimentation.
This is an expensive task that could be reduced by either (A) experimentation in a
staging or development environment; or (B) through the use of test case reduction
techniques, commonly seen in academic approaches that employ model checking.
ALFI [], initially designed for returning library-specific errors using fault
injection with a minimal blast radius required that developers manually instrument
the libraries in use by the microservice application. This is also an expensive task
that could be reduced by either (A) experimentation in a staging or development
environment; or (B) through the use of some sort of automatic instrumentation.

When considering (A) specifically, running chaos experiments in the staging or
development environment is not as straightforward as it sounds. While the tools
work in the same manner regardless of environment, the reliance on a key perfor-
mance metric as the test oracle no longer works: the local development environment
will not see any requests outside of what is issued by the developer; similarly, the
staging environment may not as well. Therefore, to bring this experimentation style
into the local development environment, one must first solve the problem of the
missing test oracle: the specification of the application’s behavior under fault.

Fault Tolerance. When it comes to fault tolerance, developers rely on a set of tech-
niques designed for microservice applications, in addition to the standard retries
and timeouts often used by the developers of distributed data systems (e.g., Cassan-
dra). These techniques are: fallbacks, circuit breakers, and load shedding. Rather
obviously, circuit breakers and load shedding are named after their counterparts
in the field of electrical power management and delivery: both techniques used to
prevent overload of a system in the event of one or more faults.

Fallbacks are used when a remote service is malfunctioning or unavailable in
order to find alternative or replacement information from a different, properly
functioning service. The canonical example here is from the streaming service,
Netflix, where when movie recommendations tailored to the user are not able to be
retrieved, a set of movie recommendations based on the global user base is returned

18 Background and Related Work

instead. Fallbacks allow the system to keep functioning in case of a fault, potentially
with a degraded user experience.

Circuit breakers are also used when a remote service is malfunctioning or unavail-
able to relieve pressure on the remote service and to avoid waiting for a resource that
will not respond promptly. To achieve this, circuit breakers accumulate counters that
reflect the number of successful and unsuccessful responses within a given window.
When the counters exceed a particular threshold, the RPC to the malfunctioning or
unavailable service is “short circuited” by returning an error immediately to the
caller to indicate the circuit is open. Periodically, to close the circuit once the remote
service begins functioning correctly, an RPC is allowed to happen. Eventually, once
the remote service fully recovers, the circuit moves back into the closed state.

Load shedding is used when a remote service is overloaded and cannot respond
promptly to reduce pressure on that service. Where circuit breakers are located
at the invocation site of an RPC, load shedding is situated on the invokee side
of an RPC. Load shedding compliments circuit breaking, as circuit breakers may
fail to fire quickly enough — or the remote service may have multiple invokers
whose combined load exceeds the service’s capacity — to keep services functioning
correctly. To achieve this, load shedding typically tracks the number of outstanding,
concurrent requests, and once a threshold is exceeded, requests are immediately
“short-circuited “ by returning an error to the invoker (or dropped silently.) If a
circuit breaker is in place, these requests may cause the invokers circuit breaker’s
counters to increment.

These three techniques are not a panacea of fault tolerance, however. For example,
fallbacks must be carefully considered, as in the event of a fault, the fallback may
also be unavailable or malfunctioning. With circuit breaking, thresholds may be
misconfigured or, when the circuit breaker is used too coarsely, might simultaneously
turn off correctly functioning components of the application while trying to contain a
fault. With load shedding, the same type of behavior can occur. Therefore, any fault
injection technique must also consider faults within the fault tolerance measures
employed by the application.

For most microservice applications, a combination of these three techniques,
along with timeouts and retries, are used to prevent the dreaded cascading failure,
where a fault in one service left unhandled or improperly handled, propagates to
the services that depend on it through the application’s RPC graph, inducing further
faults until the entire application fails.

2.2.2 Academic Literature

This section presents both the fault injection and fault tolerance techniques for
microservice applications that have been the subject of academic study. The related

Related Work 19

work in distributed data systems is also presented for historical context.

Fault Injection. Academic research on fault injection testing and fault tolerance
in distributed data systems has historically built upon the rich history of model
checking, either relying on specifications of either the external behavior of the sys-

tem under test or the internal system state [; ; ; ;
; ; ; |. However, successfully applying these techniques
to microservice applications has been limited |]. Outside of mechanizing

an approach that supports deterministic fault injection across multiple services
implemented in various languages, one of the main challenges has been the lack
of a test oracle that specifies behavior under failure. In industrial microservice
applications specifically, specifications that are rich enough to support model check-
ing are rarely if ever, written; similarly, the decentralized nature of microservice
application development prevents the use of global state invariants placed across
all stateful services in an microservice application. However, the developers of
industrial microservice applications are writing functional tests. Therefore, it would
seem that any successful approach should built on and extend to cover behavior
under fault, the test oracles already being written.

One key observation about microservice applications is that intra-service com-
munication is typically performed using client libraries (e.g., AWS DynamoDB
client) or RPC frameworks that are directly built on and/or extended as libraries
(e.g., HTTP via Java’s Netty library, gRPC via Google’s gRPC library.) Therefore,
the existing research on library-level fault injection (e.g., FIG, LFI, AFEX) | ;

;], which purports that low-level faults will manifest themselves as
library-level errors in an application, may be a helpful starting point for automated
fault prevention techniques for microservice applications. There is evidence of this:
CHAOSMACHINE [], for example, uses a library-level fault injection approach
to exercise and test an microservice applications exception handlers. Library-level
fault injection strikes a good middle ground where library-specific errors can be
simulated automatically and exhaustively without requiring low-level fault injection
to trigger them organically.

In contrast to library-level fault injection, recent academic approaches have pro-
posed targeting the network layer for fault injection. For example, the academic
system sharing the same name as an industry service, GREMLIN | | proposes
the use of sidecar proxies at each node, where all RPC communication is routed
through them before reaching the destination, for fault injection; this removes the
requirement of local code modifications to support fault injection. Even further,
ucheck [] proposes the use of software-defined networking (SDN) infras-
tructure for fault injection, removing the requirement for any code modification or

20 Background and Related Work

additional infrastructure on each node. However, this style of low-level fault injec-
tion can prove problematic when injecting specific faults, for instance, triggering a
gRPC failed precondition error instead of a somewhat more straightforward gRPC
service unavailable error. Effectively, the movement away from library-level fault
injection, presumably done because of the costs of instrumenting each library the
application uses to issue RPCs, has made it more challenging to inject certain types
of faults and more costly in computing resources and required infrastructure.

Despite advances in the fault injection methodology, the problem of the missing
test oracle remains unsolved. ucheck [], which relies on fault injection in
the SDN layer, still requires that application developers write state invariants that
can be used for verification: not feasible for microservice applications. In contrast,
GREMLIN [], which also operates at the network layer but instead uses sidecar
proxies for fault injection, has no visibility into the system state and only provides
assertion languages over the request patterns between different services: this re-
quires developers, in addition to writing end-to-end functional tests also encode how
communication occurs. Finally, CHAOSMACHINE [] eliminates the need for
state invariants by allowing developers to specify, using annotations in application
code, whether or not an injected fault will be resilient (i.e., no change on system
state), observable (i.e., by the user), debuggable (i.e., creates log messages), or silent
(i.e., no derivation in state nor additional logging.) In short, while CHAOsSMAcHINE
advances the academic work toward commonly used industrial techniques (c.f.,
chaos engineering), it remains somewhat disconnected from typical functional test-
ing. A promising natural progression of this research is to explore the specification
of the test oracle as observable deviations from the application behavior when faults
are not present.

The unfortunate casualty of this migration away from specifications is test case
reduction. In distributed data systems specifically, test case reduction has typi-
cally relied on properties of the system under test: for example, symmetry reduc-
tion |], where certain test cases can be avoided under the assumption that
different replicas of the same service will behave identically. However, the lack of
access to realistic microservice applications [; ;], and
the deficiencies in existing open-source corpora, Wthh have not been operated at
scale [| nor contain realistic bugs specific to the choice of a microservice
application [], have limited the ability of researchers to discover simi-
lar techniques for microservice applications. Therefore, with increased access to
descriptions or implementations of realistic microservice applications and actual
bugs experienced in microservice applications, the discovery of test case reduction
techniques will be possible.

Most notably, and most recently, RAINMAKER [| proposes an approach
closest to the innovations that are presented in this dissertation. However, instead of

Related Work 21

focusing on microservice applications, RAINMAKER's focus is on testing applications
that use cloud services using HTTP APIs, leveraging the application’s test suite
for a test oracle, and employing a test case reduction strategy. This meets both the
goals of a cheap library-level fault injection technique, where all HTTP calls can be
uniformly instrumented using a network proxy with no application modification,
and avoids the heavy requirement of test oracle creation.

Towards these goals, Rainmaker makes several simplifying assumptions, thereby
achieving an automated fault injection technique that can be used to surface bugs
quickly in these applications. As these assumptions are relevant to this dissertation,
they are briefly discussed:

o Application Structure.

In order to reduce testing cost, redundant test cases are identified and elimi-
nated through an analysis phase. However, these redundant test cases are iden-
tified both using the application’s call site of an RPC and under the assumption
that the error handling code for that RPC is co-located at the invocation’s call
site. In short, it is only necessary to test each individual RPC a single time to
determine if failure of that RPC is handled properly. As will be demonstrated
in this dissertation, this simplification is not true for industrial microservice
applications. In fact, two of the bugs identified during the development of
this dissertation involved non-localized error handling.

o Test Oracle.

To avoid the high cost in creating a failure-specific test oracle [] an
application-agnostic test oracle is used as an alternative. This oracle assumes
that any exception generated by the application code itself is not indicative
of a bug; this is in direct comparison to an exception generated by a under-
lying framework code. This simplification is based on an assumption that
application-thrown exceptions indicate that an underlying exception was han-
dled and a specific application error was thrown.

Not only is this not true for industrial microservice application code, where
the line between framework code and application libraries developed by large
organization(s) to support rapid development is blurred, it also fails to ac-
knowledge “silent failures”: where something does not happen that should
have, but did not trigger an exception. As will be demonstrated in this
dissertation, use of an application-agnostic test oracle is not sufficient for
resilience bug identification. In fact, these “silent failures” map to an entire
class of application behavior known as graceful degradation, where silent fail-
ures can adversely affect end users, embodied by the bugs discovered during
the development of this dissertation.

22 Background and Related Work

RAINMAKER’s evaluation of these techniques is performed on open-source library
code, found on GitHub by researchers. This further emphasizes the need for open-
source corpora to further fault injection research.

Fault Tolerance. Research on microservice application specific fault tolerance is
quite limited, again presumably due to the lack of access for academic researchers
to realistic applications |]. While academics have seemingly studied the
use, and improvement of, circuit breaker technology, none have considered it in
the context of fault injection to determine what behavior an application has when
a circuit breaker is open. This is despite circuit breakers provoking failures in
microservice applications by design.

Several qualitative studies [; ; ; ; ; ;

; ; ;] have identified circuit breakers as a core pattern
used to improve reliability or availability (i.e., resilience) in microservice applica-
tions. Most notably, Surendro and Sunindyo’s systematic mapping study []
identified a lack of existing research on circuit breakers compared to other microser-
vice application topics.

Outside of qualitative studies, previous work has explored the transparent ap-
plication of circuit breakers in an academic programming language [] and
either the dynamic tuning of [] or optimal configuration via model checking
of [], a circuit breaker’s configuration parameters. Palliwar ef al. |]
proposed distributed circuit breaking, where a gossip protocol is used to dissem-
inate circuit breaker state across nodes in a cluster for faster detection of failures
in a microservice application. Heorhiadi et al. | | who proposed the fault
prevention tool GREMLIN, also considered circuit breaker testing as part of the design
of GrRemLIN and provided a mechanism for asserting that they operated correctly,
but failed to consider application behavior once activated.

Researchers have also motivated the design of data plane fault injection tools
using circuit breakers; however, none of these designs contained anything specific
for testing what an application does when a circuit breaker is open: a specific case
where a fault is injected into an application. It is important to note that no relevant
academic research could be found regarding load shedding as a fault tolerance
technique in microservice applications: another case where faults are injected into
an application when running by design.

2.3 Takeaways

Regarding fault prevention in microservice applications, there is an evident trend
when you examine the existing academic research and industrial practices: they are

Takeaways 23

converging.

Industrial practices seem to be evolving in the direction of more traditional
academic research through the use of or desire to use library-level fault injection,
with automation for the generation of tests or chaos experiments, using granular
fault injection to minimize the blast radius.

o Library-level Fault Injection.
Developers realize that to build more resilient systems, they need to be con-
cerned with library-specific faults, in addition to low-level faults (e.g., service
unavailability, network partitioning). However, this approach remains dif-
ficult in practice as it requires instrumentation of each library used by an
microservice application.

o Automated Test Generation.
Developers are beginning to use the application’s configuration to identify
remote calls and automatically create test scenarios. However, running these
experiments in production, combined with the lack of test case reduction,
makes running exhaustive exploration infeasible.

o Granular Fault Injection.
Developers are looking at ways for blast radius minimization, as many chaos
experiments are still performed in the production environment. However,
with a proper test oracle, it would not be possible to run these experiments
in a local development environment where blast radius minimization is not
necessary.

Academic research also seems to be evolving in the direction of contemporary
industrial practices.

o Network-level Fault Injection.
For example, academic research has sought to solve the problem of heteroge-
neous implementation language usage in microservice applications through
the use of fault injection at the network level. However, this approach fails to
account for faults that cannot be generated through low-level fault injection
(e.g., Precondition Failed, Not Found).

e Test Oracle Creation.
Similarly, recent academic research has acknowledged the problem of the miss-
ing test oracle, proposing solutions that build on application observation, as is
familiar with chaos engineering. Despite this, the existing proposals still use
assertions that rely on the technical aspects of the implementation: for example,

24 Background and Related Work

messages sent between services [| or whether or not the state will change
and be observable by the end-user when a fault occurs |]. Instead,
unfortunately, manual experiment (i.e., test) specification is still required
with many of these techniques. As a result, little research into microservice
application specific test case reduction exists.

Industrial practices are influencing academic research, as clear by the innovations
in mechanizing chaos engineering and tools like Ramnmaker. Still, without access to
implementations of industrial microservice applications, academics are left guessing
at practical solutions to the most pressing of industry concerns.

This also extends to fault tolerance techniques for microservice applications.
At the same time, qualitative research that relies on developer interviews, ques-
tionnaires, and surveys identified circuit breakers as a primary technique used for
increasing the resilience of microservice applications, studies performed on open-
source microservice applications failed to identify circuit breakers, load shedding,
or fallbacks as resilience techniques used in microservice applications.

This seems to indicate that while academic research and industry practices are
converging on a similar design based on observation of each other’s techniques,
academics, without access to industrial code bases, are left to infer the methods and
solutions they feel will be helpful to practitioners.

Chapter 3

Microservices: Dependency Types

“We're building something here, detective. We're building it from scratch.
All the pieces matter.”

Detective Lester Freamon in The Wire “...and all the pieces matter.”

Microservice architectures are currently the dominant architectural style for most
consumer products and services [; ; ;]. This architectural
style involves breaking down applications into independent services, addressing
the needs of large-scale development organizations: specifically, towards increasing
development velocity by allowing these services to evolve as necessary, developed
by smaller, agile teams |]

Structurally, applications built using a microservice architecture resemble mono-
lithic applications, where the application is divided along module boundaries,
termed services. These (often stateless) services then take dependencies on third-
party applications (e.g., databases, message queues), which are managed in-house
and deployed as services, as well as third-party services (e.g., Amazon AWS, Google
GCP), which are deployed and managed by the third-party, for state management.
Such an application, utilizing bespoke stateless services and stateful third-party
services is presented in Figure 3.1.

Services then interact using Remote Procedure Calls (RPC) across a network in-
stead of method invocations within a single codebase, as in monolithic architectures.
As communication performed over an unreliable network with an independently-
deployed and managed service is ultimately prone to failures, developers must
decide before deploying code to production whether an application should withstand a
failure of a remote dependency. This decision is referred to as the type of the service
dependency.

25

26 Microservices: Dependency Types

This chapter presents the designs of two microservice applications to describe
the types of service dependencies commonly occurring in microservice applications:
hard and soft dependencies. Each example application is (re-)constructed from
public discussions of each company’s industrial microservice application.

Audible |] is an audiobook streaming service. Their microservice ap-
plication is used to demonstrate a microservice application that is composed of
predominantly hard dependencies: dependencies where upon failure of an RPC, the
failure forces the application to abort a customer’s request with an error. While
their application does contain a single soft dependency, its success or failure has no
bearing on the customer experience of streaming an audiobook: it merely tracks
internal statistics on what audiobooks customers are streaming.

Definition 1 (Hard Dependency). A hard dependency is a dependency where a failed
invocation forces the request that triggered the dependency to return an error to its caller.

Hard dependencies are specific to an invoked RPC service, method, arguments,
and specific call site with calling context, as different call sites may treat the same
RPC invocation as either hard or soft.

Netflix [] is a video streaming service. Their microservice application
design presents an application where both hard and soft dependencies are used. With
their hard dependencies, the failure of some RPCs forces the application to return
an error to the customer. In contrast, in the case of soft dependencies, the failure of
the RPC is ignored or “compensated” by issuing alternative RPCs.

Definition 2 (Soft Dependency). A soft dependency is a dependency where a failed
invocation is handled in the application to avoid the request that triggered the dependency
from returning an errot.

Soft dependencies are specific to an invoked RPC service, method, arguments,
and specific call site with calling context.

In both of these example applications, the effects of the type of dependency
choice are directly visible to the customer when trying to use the service. For
example, in the Audible example, almost all fault injections cause the customer
to experience a failure. In the case of Netflix, some fault injections will cause a
successful response to turn into an unsuccessful response; however, other fault
injections will cause the successful response’s content to change. This is a result of
the application “compensating” for the failure by loading alternative content or
omitting content that is not available.

The developers of microservice applications often prefer soft dependencies as
they enable the “graceful degradation” of microservice applications: the ability
for applications to reduce their functionality in the event of failure to provide still
(some) service to the customer.

3.1

Audible: Hard Dependencies 27

Audible: Hard Dependencies

The first motivating example is taken from Audible [], an audiobook streaming
service owned by Amazon, where the failure of (almost every) dependent service
results in the customer receiving an error.

. Content Stateful D
Audible B Amazon A Amazon
5 ———> Delivery —— N Ownership)
Mobile App T ElasticCache RDS nternal RPC - Stateless
3 Content - Audible e I —— ExternalRPC —— Client D
Delivery Download Activation) RDS
Service Service Legend
Amazon Amazon Amazon E—— 1. Get URL for CDS from CDE
(Metsjéata) ! Asss?;ts) Stats | pynamoDB | e » 2. Authorizevia ADS
————— 3.Get audiobook assets
Audible Microservice Application Audiobook Retrieval Process

Figure 3.1: Audible application with a description of the audiobook retrieval process.

3.1.1 Application Structure

The Audible microservice application, depicted in Figure 3.1, comprises several
stateful and stateless services, all of which are hard dependencies with one notable
exception.

Content Delivery Service (CDS):
Given a book identifier and a user identifier, return the actual audio content
and audio metadata after authorization;

Content Delivery Engine (CDE):
Returns the URL of the correct Content Delivery Service to contact to retrieve
the audiobook using AWS ElastiCache;

Audible Download Service (ADS):
Orchestrates logging and authorization of the audiobook once ownership is
verified;

Ownership Service:
Verifies ownership of the book using AWS RDS;

Activation Service:
Activates a Digital Rights Management (DRM) license for the user for the
requested audiobook using AWS RDS;

28 Microservices: Dependency Types

e Stats Service:
Maintains audiobook and DRM license activation statistics using AWS Dy-
namoDB. This service is the single soft dependency, which has no bearing on
the success of the user’s request;

o Asset Metadata Service:
Storage (AWS S3) for the audiobook asset metadata, which contains informa-
tion on chapter descriptions and

e Audio Assets Service:
Storage (AWS S3) for the audio files.

3.1.2 Application Behavior

When a customer requests an audiobook using the Audible mobile application, it
first requests the Content Delivery Engine to find the URL of the Content Delivery
Service (CDS) containing the audiobook assets. The app then requests that CDS.
The CDS first requests the Audible Download Service (ADS). The ADS is responsible
for first verifying that the customer owns the audiobook. Next, the ADS verifies
that a DRM license can be acquired for that audiobook. Finally, it updates statistics
at the Stats service before returning a response to the CDS. If ownership of the book
cannot be verified or a license cannot be activated, an error response is returned
to the ADS, which propagates back to the customer through an error in the client.
Once the ADS completes its work, the CDS contacts the Audio Assets service to
retrieve the audiobook assets. Then, the CDS contacts the Asset Metadata Service
to retrieve associated metadata. Finally, these assets are returned to the customer’s
app for playback.

The decomposition of the Audible application into services resembles how one
might write this application using a monolithic architecture. For example, the ADS,
which is responsible for verifying, tracking, and maintaining access to the user’s
audiobooks, encapsulates this logic by first verifying ownership, performing licence
activation, and recording statistics on activation. Similarly, the CDS encapsulates
this logic with the retrieval of the data files: when the ADS returns a successful
result, it provides the necessary audio files and metadata to the user. This natural
style of decomposition, or microservice architecture, contains more depth, rather
than breadth.

Audible: Hard Dependencies 29

If any of the dependent downstream RPCs executed when processing a cus-
tomer’s request fails, modulo the Stats service, the entire request from the customer
is failed and they are asked to try their request again. Now, let us examine how this
can go wrong based on a real-life incident reported by Audible |].

Outage. The Audible application assumes that if an audiobook exists in the system
and the assets are available, the metadata will also be available. However, this may
not always be the case. This precise fault could be detected through fault injection
testing; if used, the developers may choose to either specifically write error handling
for this case or ignore the fault under the assumption that this invariant will never
be violated.

However, the invariant was violated for reasons that are not disclosed by Audible
and are presumably related to operator or database error: the asset may have
been deleted accidentally, the database lost the file, or the database could have
malfunctioned at the time of the request. This resulted in a cascading failure and
subsequent outage of the Audible application.

This outage results from several different faults, both latent and active, that
interact with one another in some manner. Starting with the lack of error handling,
a generic error is propagated back to the mobile application that, upon receiving the
generic error, assumes the failure was transient and consequently retries the request
a finite number of times. When all of the retries return a failure, a generic error is
provided back to the customer in the mobile application that causes the customer to
issue a retry. This combination of customer-initiated retries for requests that will
ultimately fail, paired with the combination of a popular audiobook, is enough to
exhaust available “compute” capacity and cause the application to fail.

In short, a latent bug can be defined as follows:

Definition 3 (Latent Bug). A latent bug is a bug that exists in application code but has
not yet caused any observable error.

This type of bug remains dormant due to specific conditions or scenarios not
being met: the application’s environment, which includes but is not limited to
external dependencies (e.g., other services), or invalid data being provided as an
input. In microservice applications specifically, latent bugs are hidden errors that
do not necessarily cause problems initially but may lead to issues later, often after
the application is already being used. In many cases, they are activated by the
unavailability of downstream dependencies or infrastructure failures. These bugs
are hard to spot and fix because they don’t show up until specific, sometimes rare,
conditions occur in the application, often once already deployed to production.

Latent bugs are in direct contrast to active bugs, defined as follows:

30 Microservices: Dependency Types

Definition 4 (Active Bug). An active bug in a microservice application is a noticeable
software defect that affects the application’s functionality or performance at present.

Unlike latent bugs, active bugs are immediately apparent, often causing er-
rors, performance degradation, or other unexpected behavior in the system. In
microservice applications specifically, these bugs can impact individual services
or the communication between services in a microservice architecture, leading to
problems like service unavailability, incorrect data handling, or failure to execute
certain requests.

3.2 Netflix: Hard and Soft Dependencies

The second motivating example is taken from Netflix |], a video streaming
service, where its homepage requires the resources of several dependent down-
stream services to populate its content. However, when a service is unavailable,
they replace its content with content from another appropriate service to avoid
failing on a single hard dependency: the only hard dependency in this part of their
application is the customer profile service, which, when failed, prevents the page
from loading. This is referred to as a fallback, and can be provided when making an
RPC request using their fault tolerance library, HysTrix.

Request Request

Mapper Mapper Trending «..
. : :
Global
Telemetry « Recs
Frontend User 5 User o
Profiles Bookmarks My List E Recs Ratings
Expedia Microservice Application I
H API i
Gateway
Request Primary Secondary
Mapper DB DB o) L T
Netflix Microservice Application
o
‘\I Client
App
Server
L
RPC — Stateless
Load
Balancer Failed RPC ——

FallbackRPC ----- > Client D

Mailchimp Microservice Application

Figure 3.2: Industry examples in the microservice application corpus.

Netflix: Hard and Soft Dependencies 31

3.2.1 Application Structure

The Netflix example, presented in Figure 3.2, has ten services comprising hard and
soft dependencies. Similar to the Audible example, the Netflix mobile application is
represented as a service.

The services in the Netflix example are:

Client:
Simulates the mobile client;

API Gateway:
Assembles a user’s homepage using content from various downstream depen-
dencies, both hard and soft;

User Profile:
Returns profile information;

Bookmarks:
Returns last viewed locations of movies;

My List:
Returns the list of movies in the user’s list;

User Recommendations:
Returns recommendations specific to the user;

Ratings:
Returns the user’s movie rating;

Telemetry:
Records telemetry information;

Trending:
Returns trending movies; and

Global Recommendations:
Returns recommendations for all users of the application.

3.2.2 Application Behavior

In this example, loading the Netflix homepage requires the responses several ser-
vices: a high fan-out that touches multiple services to retrieve their current locations
in television shows or movies they were watching, what they want to watch, trending
content, user recommendations, and their ratings.

32 Microservices: Dependency Types

This style of decomposition into services differs from the Audible example.
Instead of services that encapsulate other services in order to derive their own
response from the responses of dependent services (c.f., in Audible, verify ownership
to allow downloads of audio files) many of the services in Netflix example have no
dependencies and have very little implicit ordering between them. In fact, most of
these requests can be performed in parallel. These types of high-fanout content-
driven applications, where independent data can be retrieved in parallel, typically
result in graphs that contain more breadth, rather than depth.

In direct contrast to the Audible example, Netflix does not want to fail the entire
homepage load if one of these services is down. Instead, they prefer to omit or load
alternative content to provide a homepage that may not be as rich in the presence of
failure.

While the list of services presented comes from several Netflix presentations
on chaos engineering, the precise fallback behavior is only known to Netflix em-
ployees. However, it is known from these presentations that fallback behavior for
each service exists, so liberties were taken to “re-imagine” what reasonable behavior
might be in the presence of dependency failure. One such example of this is the
assumption that when the user recommendation service is unavailable, the global
recommendation service is used instead by showing customers what’s being recom-
mended to everyone if user-specific recommendations are unavailable. Similarly, if
the customers recently watched, but unfinished, movies were unavailable, display
movies or television shows currently trending worldwide instead.

In all these cases, providing alternative content on the homepage over showing
the customer an error page is always preferable: graceful degradation in practice.
Therefore, graceful degradation can be defined as follows:

Definition 5 (Graceful Degradation). Graceful degradation in a microservice application
occurs when, on unavailability of a service dependency, the microservice application opts to
swallow the error and alter its behavior in response to the unavailability, in either a manner
that is directly visible to the caller immediately, during some subsequent request, or not at
all.

3.3 Takeaways

Classifying dependencies as either hard or soft is critical to how microservice appli-
cation developers deal with partial failure in microservice applications. In short,
developers prefer soft dependencies, where failures can be mitigated at runtime
by ignoring or compensating for the failure with data from a different, responsive
service. However, soft dependencies can often not be used; for example, if the

Takeaways 33

customer’s user information cannot be retrieved, it may be impossible to proceed.
An example of this was presented in both the Audible and Netflix examples.
When soft dependencies can be used, this is typically called graceful degrada-
tion. In essence, it is always preferred to give the customer a slightly incorrect or
incomplete answer over giving them an error, where they may turn to different
vendors of the same consumer service (i.e., when Uber, a ride-sharing service, is
returning errors, using Lyft, an alternative, competing ride-sharing service as the
cost of switching services is relatively low.) Therefore, using soft dependencies
enables applications to be highly resilient to failures that may affect customers.

Chapter 4

Microservice Application Corpus

“I really enjoy listening to stories. I remember them and keep them in my mind.”

Abbas Kiarostami

The first challenge in approaching the design of a new fault injection technique
for microservice applications is to understand the structure of industrial microser-
vice applications and the type of faults that affect them. In other fields, such as
software testing and distributed systems, this is typically performed using open-
source applications and bug corpora. Unfortunately, while open source microservice
applications designed for instruction on microservice application design [Soc; 1,
and microservice application research corpora |] do exist, a corpus of real-
istic microservice applications containing faults, or employing resilience techniques,
remains unavailable for microservice application researchers.

For example, much of the research into testing distributed data system for re-
silience relies on open-source infrastructure software (e.g., Zookeeper, Cassandra,
HDFS) where all of the development of this software is performed using both a
public bug tracker and public software repository that contain all historical revisions
of the software and the reasons for each change. These resources allow researchers
to reproduce previously encountered, often fully documented, bugs. However, most
of these projects are monolithic in design and do not resemble microservice appli-
cations: in short, they are single applications, that while distributed, are typically
constructed in a monolithic style where they are deployed in replica sets. Rather,
unfortunately, they do not reflect the type of microservice applications being built
today: where each service provides its unique business logic, and modularization,
for developer productivity, is a core design tenet. For example, Uber, a ride-sharing
service, 2020 had 2,200 microservices, each providing unique functionality.

35

36 Microservice Application Corpus

As another example, most of the research into the testing of monolithic software
uses bug databases assembled by the research community: collections of software
projects with documented bugs harvested from open-source code repositories. How-
ever, these projects suffer from two issues that make them unsuitable for use in
microservice testing;:

1. These applications are monolithic in design, lacking communication over the
network between different system components.

2. Many, if not all, of the bugs in the significant bug repositories contain bugs
that could be identified through traditional software testing using regular unit
or functional tests. Simply put, these bugs are not specific to resilience issues
in microservice architectures.

Therefore, to perform this research, it was necessary to create an application
corpus that could be used as the basis for research.

To create this corpus, conference talks at industry events such as Chaos Conf
and AWS re:Invent were used, where it is common for industry practitioners to
discuss and advocate for the use of chaos engineering. The following search terms
were used to find these talks: “chaos engineering” or “resilence”, “chaos”, or “fault
injection”. Building upon this, companies that sold chaos engineering services were
also identified, and their public client lists were then used to perform a reverse
search for these companies to find a presentation or blog post discussing their use
of chaos engineering.

In total, 50 presentations were systematically reviewed, which represented 32
different companies') on chaos engineering. These included technical talks hosted
on YouTube and blog posts. This review demonstrated that chaos engineering is used
by companies of all sizes, in all sectors, including but not limited to; large tech firms
(e.g., Microsoft, Amazon, Google), big box retailers (e.g., Walmart, Target), financial
institutions (e.g., JPMC, HSBC), and media and telecommunications companies
(e.g., Conde Nast, media dpg, Netflix.)

In the majority of these presentations, companies had at least one of two major
concerns: concerns around the reliability of software under development and the
reliability of the cloud infrastructure that the company was running its software on.

From there, the presentations were filtered using the following criteria:

1. Did the presentations detail a real bug they discovered using chaos engineer-
ing?

IProvided is the list to a single representative presentation, each of the 32. Chaos engineering
was used in one case, but no talk or blog post discussing its use was available |]

37

2. Did the presentation run a chaos engineering experiment that could have been
performed locally?

Finally, bugs where the bug did not occur in the application code but instead
were related to incorrect cloud configuration were filtered out. These examples
ranged from the incorrect configuration of authorization policies (c.f., AWS IAM)
to missing auto-scaling rules (c.f.,, AWS EC2.)

In the end, four presentations were selected, which represented the following
companies: Audible, Expedia, Mailchimp, and Netflix. It is important to note
that these are not full microservice applications: but, rather only contain a small
subset of services useful for demonstrating a resilience technique or bug related to
microservice application resilience. These are the industry examples.

e Audible is a company that provides an audiobook streaming mobile applica-
tion. In their presentation, they describe a bug where the application server
does not expect to receive a NotFound error when reading from Amazon S3.
This error is unhandled in the code and propagated to the mobile client with
a generic error message. They discovered this bug using chaos engineering.

e Expedia is a company that provides travel booking. In their presentation,
they discuss using chaos engineering to verify that if their application server
attempts to retrieve hotel reviews from a service that sorts them based on
relevance and that service is unavailable, they will fall back to another service
that provides chronologically sorted reviews.

e Mailchimp is a product for e-mail communication management. In their
presentation, they discuss two bugs:

1. legacy code that does not handle the case where their database server
returns an error code to indicate that it is read-only; and

2. one service becomes unavailable and returns an unhandled error to the
application.

Both of these bugs were discovered using chaos engineering.

o Netflix is a media streaming product. In two of their reviewed presentations,
Netflix discusses the services involved in loading a Netflix customer’s home-
page. Netflix doesn’t disclose the actual fallback behavior for each service in
these presentations but instead alludes to possible fallback behavior. During
corpus construction, liberties were taken as to what this behavior was.

In one of these presentations, Netflix discusses several bugs they discovered
using their chaos engineering infrastructure. These are:

38 Microservice Application Corpus

1. Misconfigured timeouts:
Nested service calls aren’t configured correctly to allow requests that take
longer than expected, but remain within the timeout interval;

2. Fallbacks to the same server:
Services are configured with fallbacks that point back to the failed service;

and

3. Critical services with no fallbacks:
Critical services do not have fallbacks configured.

All three of these bugs were re-created in the corpus.

In addition to these four industry examples in the corpus, the corpus also con-
tains 8 small microservice applications, the cinema examples, each demonstrating a
particular pattern observed in microservice applications during the survey. The cin-
ema examples demonstrate the various implementation strategies for an application
that books tickets for movie viewings may have.

Each example contains unit tests as well as functional tests that verify the func-
tional behavior of the application. Since the functional tests were not discussed in
most of the talks, a functional test was written that reflects the application’s “happy
path” behavior. For the cinema examples, the “happy path” test attempts to retrieve
the movie bookings for a particular user.

All examples in the corpus are implemented in Python using the Flask web
framework. Each example can be run locally in-process or in Docker containers.
Using Docker containers, each example can also be run in any Kubernetes environ-
ment (e.g., minikube, AWS Elastic Kubernetes Service) as deployment and service
configurations are provided for each service.

4.1 Cinema Examples

An open-source tutorial microservice application [Bui] was used as the starting

point for each of these examples. This application mimics an online cinema service

where users can look up information on the movies that they have bookings for.
It's composed of 4 services, where a functional test exercises core behavior:

e Showtimes:
which returns the show times for movies;

e Movies:
which returns information for a given movie;

Cinema Examples 39

e Bookings:
which, given a username, returns information about the user’s movie bookings;
and

e Users:
which stores user information and orchestrates the request from the end user
by first requesting the users’s bookings, and for every booking performs a
subsequent request to the movies service for information about the movie.

A diagram of the structure of this application and the request path for this
functional test in Figure 4.1. In this diagram, the Showtimes service is not contacted
but was included by the original tutorial, because that service is not involved in this
functional test.

. 3 . Stateless
Bookings — Movies Showtimes Bookings Movies Showtimes

RPC —

Users Users

Cinema 1 Microservice Application Cinema 2 Microservice Application

Figure 4.1: Cinema examples in the microservice application corpus.

There are 8 cinema examples. Each demonstrates a different pattern observed in
microservice applications. Here, the details of each cinema example are provided,
all examples are modifications to cinema-1, unless otherwise specified.

e cinema-2:
Modifications: The Bookings service talks directly to the Movies service.

e cinema-3, derived from cinema-2:
Modifications: The Users service has a retry loop around its calls to the Bookings
service.

e cinema-4, derived from cinema-2:
Modifications: Each service talks to an external service before issuing any
requests: the Users service requests IMDB; the Bookings service requests
Fandango; the Movies service makes a request to Rotten Tomatoes.

40

Microservice Application Corpus

cinema-5, derived from cinema-1:
Modifications: All requests happen regardless of failure; in the event of failure,
a hard-coded, default, response is used.

cinema-6, derived from cinema-1:
Modifications: Adds a second replica of the Bookings service, that is contacted
in the event of failure of the primary replica.

cinema-7, derived from cinema-6:
Modifications: the Users service calls a health check endpoint on the primary
Bookings service replica before issuing the actual request.

cinema-8, derived from cinema-1:
Modifications: The example is collapsed into monolith where an API server
makes requests to it with a retry loop.

4.2 Industry Examples

This section provides a description of the four industrial examples contained in
the corpus: Audible, Expedia, Mailchimp, and Netflix. These examples are not
meant to reproduce the entire microservice architecture of these companies. Instead,
they focus only on the services involved in a particular chaos experiment that they
performed.

4.21 Audible

The Audible example was presented in Section 3.1. Compared to Audible’s actual
deployment, some of the components represented here as services are cloud services:

1. the Asset Metadata and Audio Assets services are AWS S3 buckets; To simulate

this, HTTP services were created that either return a 200 OK containing the
asset if available or a 404 Not Found if the asset isn’t present.

2. The Ownership and Activation services are AWS RDS instances. To simu-

late this, HTTP services were created that implements a REST pattern: a
403 Forbidden is returned if the user does not own the book, a 404 Not Found
if the book doesn’t exist, otherwise, a 200 OK.

3. The Stats service is an AWS DynamoDB instance. To simulate this, a HTTP

service was created that returns a 200 OK. It was not necessary to implement
a negative response as it was not required for the reproduction of the bug.

Industry Examples 41

A simple test was written for the functional test that attempts to download (or
stream) a user’s audiobook. For the bug, the Asset Metadata service can return a
404 Not Found response if the chapter information for a book is missing. This is the
precise bug discussed in the Audible presentation and causes a generic error to be
presented to the user in the mobile application.

4.2.2 Expedia

The Expedia example, presented in Figure 3.2, has 3 services:

e Review ML:
Returns reviews in relevance order;

e Review Time:
Returns reviews in chronological order; and

e API Gateway:
Returns reviews to the user from either Review ML or Review Time based on
service availability.

The Expedia example has one functional test that loads the information for a hotel
from the API gateway. In this example, there isn’t a specific bug but a replication of
a chaos experiment that Expedia did run.

4.2.3 Mailchimp

The Mailchimp example, presented in Figure 3.2, has 5 services:

e Requestmapper:
Maps pretty URLs in e-mail campaigns to actual resource URLSs;

e DB Primary:
The primary replica of their database;

e DB Secondary:
The secondary replica of their database;

e App Server:
Requests the Requestmapper service to resolve a URL and then perform a
read-then-write request to the database, with fallback to secondary database
replica if the primary replica is unavailable; and

42 Microservice Application Corpus

e Load Balancer:
Load balances requests.

Compared to Mailchimp’s actual deployment, some of the components repre-
sented as services are non-HTTP services:

1. the DB Primary and Secondary services are MySQL instances. To simulate
this, an HTTP service was created that either returns a 200 OK on a successful
read or write or a 403 Forbidden if the database is read-only.

2. the Load Balancer service is an HAProxy instance. To simulate this, an HTTP
proxy service was created in Python.

For the functional test, a URL is resolved using the service. For the bugs, the
Mailchimp example contains two:

e Bug #1: MySQL instance is read-only.
When the MySQL instance is read-only, the database returns an error unhan-
dled in one area of the code. Since Mailchimp uses PHP, this error is rendered
directly into the page output, which is simulated by turning the 403 Forbidden
response into output directly inserted into the page.

o Bug #2: Requestmapper is unavailable.
When the Requestmapper service is unavailable, the App Server fails to
properly handle the error, returning a 500 Internal Server Error to the
Load Balancer. However, the Load Balancer is only configured to handle
a 503 Service Unavailable error by returning a formatted error page. This
is an example of missing or incorrect failure handling.

4.2.4 Netflix

The Netflix example was presented in Section 3.2. However, in their presentations,
their fallback behavior is just provided as an example. Therefore, in the corpus,
arbitrary but realistic choices are made on what the fallbacks should be seemed
to reflect possible fallback behavior. In short, the specific fallback does not matter
when it comes to fault injection testing to identify bugs, but rather, a reasonable
fallresent.

Two examples of fallback behavior implemented in the corpus:

1. when the Bookmarks are unavailable, load Trending content instead and log
error to Telemetry; and

Takeaways 43

2. when User Recommendations are unavailable, load Global Recommendations.

For the functional test, there is a single functional test that attempts to load the
Netflix homepage for a user. For the bugs, the Netflix example contains three that
can be activated with an environment variable.

e Bug #1: Misconfigured timeouts.
The User Profile service calls the Telemetry service with a timeout of 10 sec-
onds; however, the API Gateway calls the User Profile service with a 1-second
timeout.

e Bug #2: Fallbacks to the same server.
If the My List service is unavailable, the system will retry again.

e Bug #3: Critical services with no fallbacks.
The User Profile service does not have a fallback.

4.3 Takeaways

The construction of a microservice application corpus is critical in the ability to
enable practical microservice research into building resilient applications through
testing. As discussed in Chapter 2, the lack of an industrial corpus for microservice
resilience, containing both bugs and common resilience patterns is believed to
be a limiting factor in existing academic research on microservices. Towards this
goal, this newly created corpus [] serves as an essential foundation in this
dissertation. Additionally, it has also already been applied by other researchers
towards this goal |].

Chapter 5

Distributed Execution Indexing

“Sometimes, the songs that we hear are just songs of our own.”

Garcia & Hunter, Eyes of the World

At the core of any automated exhaustive fault injection technique for microservice
applications imaginable is the need to uniquely and deterministically identify every
RPC a microservice application issues. For example, in the Audible example that
is presented in Figure 3.1, one must identify the RPC issued between the Content
Delivery Service and the Audible Download Service both uniquely and determinis-
tically across all executions where an audiobook is retrieved. This is necessary to know
when the exhaustive search is complete and all possible faults have been injected.

While this may seem relatively trivial, as it only requires the identification of a
single edge in a microservice graph, it becomes more complex when multiple RPCs
between the same pairs of services may exist in the same execution. The program-
ming patterns that cause this behavior are relatively commonplace: loops, branching,
function indirection, and concurrency. In this section, these programming patterns
are described and used to motivate the design of a new algorithm.

To solve this problem, an algorithm called Distributed Execution Indexing (DEI)
is presented. DEI assigns identifiers to RPCs while guaranteeing that identifiers are
both unique within an execution and deterministic across multiple executions of
the same code.

DEI differs from the state of the art in both industrial libraries (e.g., ZipxiN [Zip],
Dapper [], JAEGER [Jae], OpenTelemetry []) and academic (e.g., Pivot
Tracing [], 3MILEBEACH |]) proposals, as it is designed specifically
for use during testing as it is higher cost, but when used, provides guarantees not
available in previous systems. These differences are useful for testing microservice
applications exhaustively using fault injection.

45

46 Distributed Execution Indexing

DEI both builds on and inherits its namesake from execution indexing [],
a technique for identification of function invocations in monolithic programs. How-
ever, DEI differs from execution indexing in that rather than identifying the series
of method invocations leading to a program execution point, it aims to identify the
remote method invocations that lead to a particular program execution point.

5.1 Algorithm Requirements

As with all dynamic program analyses, of which an exhaustive microservice fault

injection testing approach is, they must ideally be both sound and complete. For

the following definitions, a fault injection analysis is assumed which systematically

performs fault injection for all identified RPCs issued by a microservice application.
Therefore, we can define soundness and completeness as follows:

Definition 6 (Soundness). RPCs selected for fault injection must have faults injected
on only those RPCs. Soundness is violated when a fault is injected on an RPC invocation
where it was not intended.

If not, either because multiple RPCs share the same identifier or nondeterministic
assignment on repeated executions, such an approach will exhibit unsound behavior,
which may prevent both deterministic replay (i.e., debugging) and exhaustive search
as faults may be injected on the incorrect RPCs.

Definition 7 (Completeness). RPC identifiers must be unique within a given execution
and deterministically assigned across all executions.

If not, the analysis will exhibit incomplete behavior, where exhaustive search
may fail to explore the entire fault space properly.

Definition 8 (Correctness). An exhaustive fault injection analysis can only be correct if
the assignment of identifiers to each RPC, used for targeting the injection of faults, is both
sound and complete.

If not, the analysis may fail to inject faults where faults should be injected (i.e.,
false negative) and may inject faults where not intended (i.e., false positive.)

5.2 Synchronous Distributed Execution Indexing

To motivate Distributed Execution Indexing (DEI), the simplest possible RPC identifi-
cation method is used. From there, complexity is added to address programming
patterns common in industrial microservice applications.

Synchronous Distributed Execution Indexing 47

5.2.1 Signatures Are Too Coarse-Grained

Consider a straightforward way of identifying RPCs, used by other fault injection
approaches, the RPC’s signature. A RPC signature is defined as follows:

Definition 9 (Signature). A signature is a triple (m, f, a) where

e m is the module or class name of the RPC stub;
e f is the method or function name, and

e a is the parameter names and types.

This technique is agnostic to the RPC framework and can be easily used to
represent both of the most common: HTTP and gRPC. With gRPC, the class name
and method map directly; parameters are the parameter types and names for the
gRPC endpoint. With HTTP, the URI and HTTP method can be combined to form
the signature as it contains the target service, method name, and parameter names
and types, which are assumed to be String. Let us see how the RPC signature is
too coarse-grained to identify an RPC uniquely and deterministically.

Consider the example in Figure 5.1. In this example, a microservice application
comprised of two services is presented in pseudocode. Service A exposes a single
RPC endpoint, helloworld, which issues two RPCs to Service B’s RPC endpoint,
echo, before combining the responses and returning a response. If Service B is down,
a default response is returned by the function wrapping the RPC on line 8.

In the case of the RPC invocation at line 10, the signature would be composed
of the target service name B, the method echo, and the parameter (s,String). In
this application, the signature for both of the RPCs invoked by Service A, on lines
3 and 4, would be identical: (B,echo, (s,String)). Therefore, an analysis using
signature alone would not be able to distinguish between the first and second RPCs
for fault injection; that is, the RPC signature alone is too coarse-grained for identifying
a particular RPC.

5.2.2 Increasing Granularity: Invocation Count or Call Stack

Increasing the assigned identifiers” granularity is one solution for resolving the
issue where identical identifiers are assigned to different RPCs. Here, the two ways
this could be accomplished are examined to demonstrate that they must be used
together.

In the following discussion, since the presentation goes beyond just signature-
based identifiers, it is assumed (for ease of presentation and without loss of gener-
ality) that a service (say A)) makes RPC invocations to only one other service (say

48 Distributed Execution Indexing

@service_a.method("helloworld"”)
def service_a_helloworld():
hello = echo("Hello")
world = echo("World")
s = hello + " " + world
return s

def echo(s : String):

try:
res = rpc(service_b, "echo", s)
log_success(res)
return res

except Exception as e:
log_error(e)
return s

O 0 NI O U1 o W N

e e e
N O == W N~ O

@service_b.method("echo")
def service_b_echo(s : String):
return s

e e
o o

Figure 5.1: RPC signature alone cannot distinguish between the RPCs issued on lines 3 and
4; call stack or invocation count must be combined with signature.

B) and only a single RPC endpoint (e.g. echo) per service. Thus, only the invoking
service name (e.g., A) is used as a shorthand for an outgoing RPC from A that stands
in for the full signature, which would contain the target service, method name, and
the method’s formal parameters.

1. Invocation count.
3MiLeBeacH keeps track of the number of invocations for each RPC call site to
distinguish multiple calls to the same call site. In Figure 5.1, the same RPC
is invoked twice. The symbol “|” indicates the invocation count of an RPC
signature. For example, the identifiers A|; and A|, distinguish the 1t and 24
RPC invocations made from Service A at line 10.

2. Call stack.
Another approach is to increase the granularity of the identifier with some
representation of the call stack. In Figure 5.1, the RPC is invoked twice at line
10, however, with different calling contexts for the echo function (lines 3 and

Synchronous Distributed Execution Indexing 49

4). A superscript indicates the line number(s) corresponding to the call stack
at the time of invocation. For example, the two RPC invocations in Figure 5.1
can be distinguished by identifiers A>! and A*1°.

For the example in Figure 5.1, either invocation count or call-stack-based identifi-
cation works to disambiguate the two RPCs. However, neither approach is sufficient
on its own in general. A better approach is to use a combination of invocation count
and calling contexts for identifying RPCs, e.g., A*'|;, denoting the first invocation
of RPC from A with the calling context (3, 10).

To demonstrate the need for both these terms, the reader is referred to Figure 5.2.
In Figure 5.2, the reader is presented with a different implementation for A; it is
assumed the exact implementation of B from Figure 5.1. In this example, A’s RPC
endpoint helloworld takes, as parameters, a list of String. For each String that
is provided, an RPC is invoked to B’s echo endpoint. If the RPC to B throws an
exception, the remainder of the list traversal is aborted and a final RPC is made to
B using a default value and that value is returned by A. When no exceptions are
thrown, the aggregated results are joined and returned by A.

Consider a functional test that invokes helloworld with a list containing two
Strings. For simplicity, it is assumed that each RPC can only throw a single runtime
exception. Therefore, an exhaustive analysis must run five different executions.

First, consider the execution where both loop iterations execute and all RPCs
are successful, denoted as a sequence of RPC invocations: e; : (A%|;, A%|;). Next,
consider the executions where the RPC throws an exception, using the - symbol to
denote a failed RPC invocation. When a fault is injected in the 2™ iteration of the
loop, there are two cases when the fallback RPC either completes successfully or
fails: e; : (A%}, ~AB|5, A'®|y), €5 : (A%}, ~AB|5, —A™|y). Finally, consider the executions
where the RPC throws in the 1% iteration and the fallback RPC either completes
successfully or fails: es : (=A%}, A'®]y), es: (=A3|}, =A'];).

Using this example and these test executions, it is now demonstrated why invo-
cation count and call stack are, by themselves and in combination with the signature,
insufficient for ensuring correctness based on our criteria. Therefore, they must be
combined.

o Invocation Count Alone is Insufficient.
Consider executions e; and e,. Using invocation count alone these executions
would instead be represented as e; : (Al1, Alz) and ey : (—Al;, Al2). However,
Al in e; refers to the invocation at line 8, and A|, in e, refers to the invocation at
line 16. Therefore, to correctly assign identifiers to these RPCs, the granularity
must be increased to include the call stack that resulted in the RPC invocation.

50 Distributed Execution Indexing

@service_a.method("helloworld"”)
def service_a_helloworld(ss : List[String]):
rs = []

failure = False

for s in ss:
try:
r = rpc(service_b, "echo"”, s)
rs.append(r)
except Exception as e:
failure = True
break

O 0 NI O U1 o W N

_ =
W N =, O

if failure:
s = "Hello World”
r = rpc(service_b, "echo", s)
return r
else:
return rs.join(" ")

e e e e e
O 0 N O U1 W

Figure 5.2: Signature combined with invocation count insufficient in distinguishing 2"
iteration of loop from 1% invocation of failure handler; signature combined with call stack
insufficient in distinguishing loop iterations.

o Call Stack Alone is Insufficient.
In e;, both requests would be assigned the same identifier: e; : (A% A®). There-
fore, to correctly assign identifiers to these RPCs, the granularity must be
increased to include the number of times each RPC invocation statement is
reached.

Combining the RPC signature and the calling context creates a dynamic invocation
signature. This allows for handling both looping constructs and conditional control
flow, as presented in Figure 5.2. This is defined as follows:

Definition 10 (Synchronous Invocation Signature). The synchronous invocation signa-
ture for an RPC invocation is a triple (s, t), usually denoted as s', where:

o s is the signature of the RPC;

o t represents the call stack of the RPC.

Synchronous Distributed Execution Indexing 51

Thus, the notation s| refers to the k-th invocation of an RPC with invocation signa-
ture s’. An important point to note is that while RPC signatures (Definition 9) can
be statically determined, the invocation signatures (Definition 10) are determined
only based on observed executions.

5.2.3 Increasing Granularity: Path to Invoking RPC

Figure 5.3 is another variation of the helloworld microservice application. Similar
to Figure 5.2, Service A receives a list of Strings, invokes an RPC on Service B for
each member in the list, and accumulates the result. In the event of an exception, a
placeholder value is accumulated, and the failure is recorded. The recorded failures
are then iterated in a retry loop, and if successful, the value replaces the placeholder.
Different from Figure 5.2, Service B invokes an RPC on a third service, Service C,
and decorates the response somehow before returning a response to Service A.

The same functional test is assumed. However, the parameter name s in the
invocation signatures is omitted for readability.

Using the technique from the previous section, the execution where the list
iteration completes and no faults are injected is: e; : (A%|1, B¥|5, A%|1, B?°|2). For each
iteration, A issues an RPC from line 9 to B; when B receives the RPC from A, it
issues an RPC to C from line 29. Recall from the previous section that the entire
call stack of the application is encoded; in this example, each service only contains
a single method, and therefore, the call stack only includes a single line number.
When looping or other conditional control flow is used, including the invocation
count for each call site captures each loop iteration.

Now, consider the functional test execution where a fault is injected on the
RPC in the 2" iteration of the loop. This execution looks like the following: e; :
(A%)1, B?|1, =A%), AP|1, B¥|;). As before, during the 1% iteration of the loop, Service
A issues an RPC to Service B at line 9; Service B then issues an RPC to Service C at
line 29. When the 2"¢ iteration of the loop is reached, a fault is injected for the RPC
from Service A to Service B. Then, the failure condition is met, and a subsequent
RPC is issued from Service A to Service B on line 19; Service B then issues an RPC
to Service C on line 29 before returning a response.

The issue experienced in this example is that the RPC identified by B*’|; in test
execution e; is not the same as the RPC identified by B¥|; in test execution e;. In
execution e, the RPC from Service B to Service C at line 29 is caused by the RPC
issued by Service A on line 9. In execution e;, the RPC from Service B to Service C
at line 29 is caused by the RPC issued by Service A on line 19. These are different,
even though they issue the same RPC with the same arguments and payload. They
represent distinct call sites in different parts of the code: one is part of the normal
operation of the RPC endpoint where no failure occurs, and one represents error

52 Distributed Execution Indexing

@service_a.method("helloworld”)

def service_a_helloworld(ss : List[String]):
rs = []
failure = False
failures = []

for s in ss:

try:
r = rpc(service_b, "echo"”, s)
rs.append(r)

except Exception as e:
failure = True
failures.append(len(rs) - 1, s)
rs.append("")

O 0 NI O U1 B~ W N

P e e
G = W N = O

if failure:
for (i, s) in failures:
try:
r = rpc(service_b, "echo"”, s)
rsfil = r
except Exception as e:
pass

N N NN DN PR ==
= W N R O 0 0NN o

return rs.join(" ")

N
a1

@service_b.method("echo")
def service_b_decorate_echo(s : String):
try:
r = rpc(service_c, "echo”, s)
return r
except Exception as e:
return s

W W W W W N N NN
= W N R, O 0 00 NN O

@service_c.method("echo")
def service_c_echo(s : String):
return s

QW W
[NE;]

Figure 5.3: RPC signature, when extended with invocation count and call stack, is insufficient
when different incoming RPC requests trigger RPC invocation.

Asynchronous Distributed Execution Indexing 53

handling code that needs to be tested to ensure correct operation of the application
under failure. Therefore, associating the same identifier to these RPCs results in
both unsound and incomplete behavior: either the injection of faults on the incorrect
RPC or the failure to explore the fault space during an exhaustive search.

To resolve this issue, the path of RPC invocations that resulted in the current RPC
must be included, as the call stack does not capture this information. To achieve this,
a list of identifiers is accumulated as RPCs are invoked from service to service as
part of handling a received RPC invocation: for example, [A’|; =: B¥|;]) to indicate
that the 1% invocation of invocation signature B*° occurred as a result of the 1%
invocation of invocation signature A°.

Test executions e; and e, can be reformulated as follows:

o e : ([A°1], [A°]1 = BZ|1], [A°2], [A®]2 = B¥|2])
The RPC invocations from A to B on line 9 are denoted with the prefixes A’
and A’|, to include the enclosing RPC from A.

o e : ([A1], [A%y = BPI1], [2A]), [AV11], [A®]y == B®]2])
The RPC invocation from B to C on line 29 is prefixed by A'|;, which distin-
guishes it from the 2"4 RPC in execution e; from A to B on line 9 that triggered
the RPC from B to C on line 29.

Definition 11 (Synchronous Distributed Execution Index). The synchronous dis-
tributed execution index for an RPC invocation is a sequence [ric, == rale, i« it Tule,]
where:

e r, is the invocation signature of the current RPC invocation; and,

o the current RPC invocation is the c,-th invocation of r, with the path having DEI

[rile, = rale, v i Pnmtle,]

The definition of a synchronous distributed execution index is thus recursive, with the base
case being the top-level entry point to the application, whose path is the empty sequence [].

This variant of DEI is sufficient for applications that issue synchronous RPCs, but
what about applications that use asynchronous RPCs to improve performance?

5.3 Asynchronous Distributed Execution Indexing

Recall from the previous discussion the definition of invocation signatures (Defi-
nition 10). With that definition and the associated discussion, the call stack and
invocation count were enough to distinguish RPC invocations in the presence of

54 Distributed Execution Indexing

loops and function indirection. These are, however, not enough to distinguish RPCs
in the presence of concurrency and the resulting scheduling nondeterminism from
the use of concurrency.

For example, consider Figure 5.4, a modified version of Figure 5.2, where line 7
invokes an RPC using the async primitive and the results are awaited on line 11. In
this example, the invoked RPCs execute concurrently, and their execution orders
are susceptible to scheduling nondeterminism.

Similar to before, a functional test is assumed that invokes the helloworld RPC
endpoint with two Strings. For example, the first test execution should read as
follows: e; : (A7];,A7|z): A’]; is the RPC invoked in the 1% iteration of the loop,
where A7|, is the RPC invoked in the 2"¢ iteration of the loop. However, on repeated
execution of this test through deterministic replay, or when performing an exhaustive
search, scheduling nondeterminism may result in the 2" iteration of the loop being
assigned A’|;, if the 279 block happens to execute first.

1 @service_a.method("helloworld”)

2 def service_a_helloworld(ss : List[String]l):
3 rs = []

4

5 for s in ss:

6 r = async {

7 return rpc(service_b, "echo”, s)
8 }

9 rs.append(r)

10

11 awaitAll rs

12 return rs.join(" ")

Figure 5.4: Scheduling nondeterminism can permute the assignment of identifiers. In this
case, A’|, can refer to the RPC invocation from either the 15t or ond loop iteration.

Model checkers for distributed systems also face the problem of scheduling
nondeterminism. However, these model checkers were primarily designed for
identifying concurrency bugs before later being extended for failure testing (e.g.,
message omission) and therefore rely on control of the thread scheduler. This
is unrealistic for large microservice applications where (A) they may not run all
services on a single machine during testing and where (B) services are implemented
in several languages. Therefore, ideally, a solution to this problem will not require
control of the thread scheduler.

Asynchronous Distributed Execution Indexing 55

There are three ways this could be accomplished; unfortunately, none are suffi-
cient.

1. Cloning per block.
One approach is to clone the state used to generate identifiers for each asyn-
chronous block. This would ensure that each block would independently
count invocations for each RPC signature and associated call stack. However,
this approach does not work. In Figure 5.4, this technique would result in
identical identifiers for each of the RPCs executed during the loop: (A7|;, A7];).

2. Encode thread creation.
DeaprockFuzzer [], a system for detecting deadlocks in concurrent
programs using execution indexes, takes an alternative approach where thread
creation is included in the identifier. This approach does not work for asyn-
chronous blocks, as they may execute on an existing thread pool provided by
the system or framework where the threads have already been created.

3. Cloning per thread.
If one follows this line of thinking, they could also clone the state used to
generate the identifiers for each thread. This does not work either. In Fig-
ure 5.4, scheduling nondeterminism may cause two of the RPCs to execute on
a single thread in one execution (A’|;, A7|;) and on two different threads in a
subsequent execution: (A7}, A”|;).

The approach that seems most practical stems from a key observation about mi-
croservice applications: while these applications may issue concurrent RPCs with
the same signature, these concurrent RPCs should rarely contain the same payload:
the precise argument values supplied at invocation time. Therefore, the key insight
is that, through the inclusion of the payload in each RPC’s identifier, identifiers will
be assigned deterministically without requiring control of thread creation or the
thread scheduler. To achieve this, the state that is used to derive identifiers is shared
across all threads that are used to execute concurrent code by reference.

This is referred to as the invocation payload.

Definition 12 (Invocation Payload). The invocation payload p for an RPC with n pa-
rameters is a sequence (ky,v1)(k, v)...(kn, vn) such that for each i in (1, n], the term k; is
the i-th arqument’s name and v; is the i-th argument’s value.

For gRPC, these are the precise argument values at invocation time. For HI'TP, these
are the combination of query-string arguments and request body.

In Figure 5.4, and assuming the concrete argument provided to the function
is the list ["Hello"”, "World"], the execution can be represented as follows: e; :

56 Distributed Execution Indexing

(A((s,Hello))’|;, A((s,World))’|;). Itis important to note that the invocation count
in these identifiers is 1, as it considers both the call stack and payload together. This
ensures deterministic assignment regardless of scheduling nondeterminism.

Using can use the combination of the RPC signature, the calling context, and the
invocation payload a asynchronous invocation signature for an RPC can be defined as
follows:

Definition 13 (Asynchronous Invocation Signature). The asynchronous invocation
signature for an RPC invocation is a triple (s, p, t), usually denoted as s(p)*, where:

e s is the signature of the RPC;
e p is the invocation payload of the RPC, and
o ¢ represents the call stack of the RPC.

Thus, the notation s(p)‘| refers to the k-th invocation of an RPC with asynchronous
invocation signature s(p)*. While this presentation has been framed using async/await,
many other concurrency primitives (e.g., futures, coroutines) exist that have the
same challenges: this technique extends to all of them.

From here, we can define a asynchronous distributed execution index, or what we
will refer to from here on as a distributed execution index (DEI).

Definition 14 (Distributed Execution Index). The distributed execution index for an
RPC invocation is a sequence [ry|c, = r2le, = -+ it ryle,] where:

e r, is the asynchronous invocation signature of the current RPC invocation; and,

o the current RPC invocation is the c,-th invocation of r, with the path having DEI
[rile, = raley = rneale, -

The definition of a distributed execution index is thus recursive, with the base case being the
top-level entry point to the application, whose path is the empty sequence [].

This design assumes that a key observation holds: microservice applications do
not issue concurrent RPCs from the same call site, with the same calling context, to
the same service, containing the same payload: what is believed to be valid from
the survey of microservice applications performed during the construction of the
microservice application corpus.

Implementation 57

54 Implementation

DEI’s can be represented in several formats in an implementation, depending on
the required use case. In the case of the implementation for this dissertation, three
different formats were realized with an option to reconfigure their use at runtime.
However, other representations may be helpful when applying DEI’s in other dy-
namic analyses.

5.4.1 Debugging Representation

For the debugging representation, each element in a DEI sequence is composed of
tive components:

1. A metadata component, where application developers can add debugging
annotations into their code to populate the metadata section with additional
debugging tags. This metadata section defaults to an empty value when no
tags or annotations are used.

2. The invoking service name, a textual string of the invoking service’s name. This is
not necessary for correctness but may be helpful to the developer in identifying
the caller of a particular RPC.

3. A signature, containing only the DEI’s signature: module or class, method or
function name, and parameter names and types.

4. A synchronous component, containing the representation of the call stack, as
used in both the asynchronous (i.e., Definition 13) and synchronous (i.e.,
Definition 10) invocation signatures.

5. An asynchronous component, containing the representation of the invocation
payload, as used in the asynchronous invocation signature (i.e., Definition 13.)

6. The invocation count for the invocation signature.

The invoking service name, signature, synchronous, and asynchronous compo-
nent form a five-tuple identifier. Identifiers and invocation count are combined into
a tuple to represent an RPC executed by the application. Therefore, a sequence of
tuples forms a DEI, encoded as an array in RPC invocation order, and captures the
RPC invocation path.

58 Distributed Execution Indexing

5.4.1.1 Projection and Partial Orders

This representation helps debug and analyze microservice applications by providing
several applicable partial orders using a DEI projection algorithm. For example,
several projections have proven useful during this dissertation:

o Identifying all RPCs executed in an application trace.
By projecting the signature and synchronous components of the last sequence
element in a DEI for each element in an application trace containing several
DElIs, an application developer can identify all of the RPCs executed, from a
particular call site, in that specific trace.

o Identifying possibly redundant RPCs from the same service.

By projecting the invoking service, signature, and asynchronous components
in a DEI, developers can identify possibly redundant RPCs: when a service
executes the same RPC, with the same arguments, from the same service twice
as part of the same trace, regardless of the call site. For example, when a service
retrieves the user information twice. This is only an over-approximation, as
the RPC may perform a side-effect twice on purpose instead of reading values
using an RPC.

o Identifying possibly redundant RPCs from different services.

By projecting the signature and asynchronous component of the last sequence
in a DEI, developers can identify possibly redundant RPCs: when a service
executes the same RPC, with the same arguments, from the same service twice
as part of the same trace, regardless of the call site. For example, a service
retrieves the user, while some dependent service retrieves the user. This may
indicate that retrieved data should be passed between services instead of
reinvoking the dependency. As before, this is only an over-approximation, as
the RPC may perform a side-effect twice on purpose instead of reading values
using an RPC.

Similarly, these projections have also been used to identify situations where RPC
APIs could be constructed to be more efficient: for example, where two RPCs are
issued to the same downstream service from the same service in direct sequence,
where the data from the first RPC is fed into the arguments of the second RPC.
This can indicate that the downstream service is not providing the correct API for
its callers and may arise naturally from the decentralized nature of microservice
application development.

These microservice application “smells” and their detection using DEI were used
to construct a code linter that is available as open source as part of this dissertation.

Implementation 59

5.4.2 Verbose and Compact Representations

The verbose representation is the same as the debugging representation. However,
each element in the five-tuple is run through a cryptographically insecure hash
function (e.g., SHA-1) This representation is more space efficient than the debug
representation but preserves the ability to identify signatures and call sites using
hash comparison uniquely.

The compact representation further compacts the DEI representation, necessary
for tracing systems that place a size restriction on metadata forwarded with RPC
invocations, as each a DEI grows linearly with the depth of the microservice graph.

5.4.3 Assignment

DEI’s are assigned by applying decorators (or, in the case of an RPC framework that
supports interception of RPC invocations such as Google’s gRPC, interceptors) to
the RPC libraries in use. These decorators (or interceptors) interpose on invocations
to each RPC and generate a DEI for the invocation before forwarding the call to the
underlying RPC framework. Once generated, they must store the generated DEI in
outgoing metadata (e.g., HITP headers, gRPC metadata) to be forwarded to the
next service.

Request State. As DEI’s are compositional in their sequence construction, the
incoming DEI, the DEI assigned to the RPC invocation that resulted in a subsequent
RPC execution, must be parsed from incoming metadata and stored in an interim
location (e.g., thread-local state) such that it can then be used in the generation of
any subsequent outgoing DEI’s (associated with downstream RPCs) originating
from that service as a result of the incoming RPC.

This location must be accessible to any decorator attached to any RPC framework
used on further downstream executions. For example, when an incoming gRPC
invocation triggers downstream invocations of HITP RPCs, the gRPC handler must
place the incoming DEI into a location accessible by the HTTP library, performing
the subsequent downstream RPC.

Service Re-Entrancy. As services may also be re-entrant, such that Service A calls
Service B that then re-calls Service A using possibly a different RPC method, the
state required for generating an outgoing DEI must also be discriminated by the
entry. In short, a re-entry must generate outgoing DEI’s using the corresponding
incoming DEI.

To achieve this, incoming RPCs are assigned a random UUID called a request
identifier associated with the incoming DEI. Therefore, when a service is re-entrant,

60 Distributed Execution Indexing

a new request identifier is generated for the re-entry, and the associated incoming
DEI is related to that request identifier. This ensures that any outgoing DEI’s are
generated using the proper incoming DEI As expected, instead of the incoming
DE]I, the request identifier must be placed in the same interim state.

Finally, services should expose a mechanism for resetting any accumulated DEI
state. This reset mechanism is responsible for clearing any state, including the
request identifier to DEI mapping and any other state accumulated to track DEI
during execution.

Concurrency. While straightforward in theory, mechanizing this is significantly
more complicated in practice. In Python, a programming language that contains
concurrency with no true parallelism, the global state can track the active request
identifier for the current thread and map request identifiers to DEI's. However,
where concurrency and true parallelism are present in Java, DEI maintenance is
more challenging.

For example, when receiving an incoming DEI, a request identifier must first
be assigned and stored in a global mapping of request identifiers to DEI This
request identifier can then be assigned to thread local storage. Any subsequent
RPCs executed by the invoked service can use the associated DEI to construct DEI
for any downstream RPC invocations. But what happens if the invoked code spawns
two threads to issue two downstream RPC concurrently?

One solution is to use an inherited thread-local state, such that any created
threads inherit the request identifier and use the incoming DEI: this only works if
access to the request identifier to DEI mapping is synchronized. However, if threads
from a preexisting thread pool are used instead of creating new threads, the state
will not be present in the local state of the used thread. Therefore, these threads
must be bootstrapped with state, including the correct request identifier (in addition
to synchronizing access to the request identifier to DEI mapping in the global state).
This state must be migrated between threads upon context switches. This is further
complicated by task parallel libraries that are built on top of threads in Java (i.e.,
Kotlin, Scala, Clojure) or asynchronous RPC libraries with thread migration (e.g.,
Armeria) where execution of RPCs can occur across multiple threads.

To solve this problem, it is necessary to implement the underlying concurrency
mechanisms in Java (e.g., Thread, ForkJoinPool, etc.) and any task parallel libraries
written for the JVM (e.g., Kotlin’s CoroutineContext) to migrate any thread local
state upon context switches to ensure that the request identifier is always present
when RPC invocations occur. This is not a new problem; the authors of OpenTeleme-
try have already dedicated significant effort to solving this problem for their tracing

Takeaways 61

library. Therefore, their existing solution' is leveraged to ensure that DEI’s are
propagated accordingly in the presence of concurrency.

5.5 Takeaways

DEI'’s form one of the foundational contributions of this dissertation: the ability to
identify the location of RPC invocations in a microservice application in a manner
where they are consistent across executions of the same code. This ensures that
any fault injection approach that aims to be exhaustive can guarantee that all RPC
invocations are susceptible to fault injection and that no necessary fault injections
are missed.

As presented, DEI's can also have applicability outside of just fault injection and
can be used in other types of dynamic analyses: for example, by understanding
application behavior, identifying where RPC APIs may be incorrectly designed,
or where redundant RPC invocations are performed and should be optimized for
performance.

IThis solution relies on using a special Java instrumentation APl (eg.,
-javaagent INSTRUMENTATION.jar) at runtime to be able to override the implementations of
standard library classes (e.g., java.lang.Thread).

Chapter 6

Service-level Fault Injection Testing

“A story should have a beginning, a middle, and an end, but not necessarily in
that order.”

Jean-Luc Godard

In this chapter, one of the core contributions of this dissertation is presented:
Service-level Fault Injection Testing (SFIT). SFIT is a technique for identifying a mi-
croservice application’s behavior under fault through the use of automated fault
injection testing.

In spirit, SFIT is not unlike the previously mentioned experimental approaches
to fault injection (e.g., chaos engineering) used by industry: SFIT injects faults at all
of the inter-service communication points (e.g., RPC) to see what the application’s
behavior is under that specific fault. However, SFIT improves on several of the
deficiencies in the existing academic research in this area by taking a developer-centric
approach:

o Exhaustive.
SFIT is exhaustive in that SFIT will automatically explore the impact of faults
(and combinations thereof) of every RPC executed by a microservice applica-
tion automatically, without requiring that developers specifically derive and
manually execute fault injection scenarios.

e Specification-Free.
Instead of requiring that developers require specifications, in a specification
language specific for fault injection testing, SFIT uses the functional test suite
that developers of microservice applications are already writing to establish
what the “correct” behavior of their application is when faults are not present.

63

64

Service-level Fault Injection Testing

e Behavior-Focused.

When failures occur due to fault injection, application developers will then
be asked whether or not the failure is legitimate: did the application do the
“correct” thing under failure? If not, SFIT has discovered a bug. If so, the
developers are asked to update their tests accordingly with derivations from the
expected behavior when a fault is injected: for example, by stating something
should not occur when a fault is injected.

6.1 Overview

Service-level Fault Injection Testing (SFIT) is a developer-first approach for finding re-
silience bugs in microservice applications using fault injection. SFIT integrates fault
injection testing as early as possible, in development, before deployment of application
code and avoids the need for specifications, written in a specification language, by
leveraging a developer’s existing integration of functional tests of their application.
This decision is critical, making it so SFIT can seamlessly integrate with developers’
existing development environments and tools.

SFIT builds on three key observations made about how microservice applications

are being developed today:

e Microservices developed in isolation.

Microservice architectures are typically adopted when teams need to facilitate
rapid growth, breaking the team into smaller groups that develop individual
services that adhere to a contract. This contract typically requires two or
more teams to meet and agree to an API between the services they manage.
Therefore, individual team members typically do not understand the state
or internals of services outside their control well enough to write a detailed
application specification to verify it automatically with a model checker.

Mocking could prevent failures.

Many bugs in microservice applications could have been detected earlier if the
developers had written mocks that simulated the failure of the remote service
in a testing environment.

Functional tests are the gold standard.
Instead of writing specifications, developers write multiple end-to-end func-
tional tests that verify application behavior.

SFIT starts by identifying the faults that should be injected at each RPC invocation

site in a microservice application to construct the fault space that will be exhaustively

Overview 65

searched. To do this, SFIT uses information from the underlying RPC frameworks
to issue those RPCs: this accounts for both return values that indicate an error and
thrown exceptions at the invocation site. SFIT also relies on instrumented versions
of each RPC framework to identify RPC invocations and perform fault injection.
This instrumentation communicates with a SFIT server instance that is responsible
for driving the exhaustive search.

To start, SFIT uses the existing functional test suite of the microservice application.
This captures the desired behavior of the application when faults are not present.

However, SFIT places several requirements on these functional tests:

1. All downstream dependencies invoked by a service return successful responses
when faults are not injected.

2. Each functional test contains a comprehensive set of assertions to detect appli-
cation correctness bugs. For example, SFIT requires assertions that capture
a non-customer-visible side effect that later prevents the customer from per-
forming some subsequent action in the application. From SFIT’s point of view,
the onus of guaranteeing this is placed on the test’s author.

With these requirements met, SFIT runs each test in sequence to perform the
fault injection analysis. For each test, SFIT first runs a reference execution where
no faults are injected. This is the same as running the test without SFIT. Then, SFIT
will repeatedly re-execute it, injecting different (combinations of) faults until the
fault space is explored.

Using the Audible application in Figure 3.1, to demonstrate, the RPCs between
the Audible Download Service and it’s dependencies would first be tested for all
possible faults and combinations thereof. Then, the RPC between the Content
Delivery Service and its direct dependency, the Audible Download Service, and
so on. As faults are injected, tests will fail. However, this is expected, as most
existing tests only encode the application behavior when no faults exist. Therefore,
developers will be prompted to use fault injection predicates provided by SFIT to
assert the desired application behavior under failure.

SFIT sits at the opposite side of the design space of fault injection testing tech-
niques for microservice applications like chaos engineering | ; ; ;

] by focusing on exhaustive correctness testing, in development, before
deployment of application code to production.

In contrast, techniques like chaos engineering typically rely on coarse-grained'
fault injection experiments designed by humans where high-level Key Performance
Indicators (KPI) are used to detect resilience issues in the production environment:

lcrashing or DNS black-holing an EC2 instance.

66 Service-level Fault Injection Testing

for example, Netflix’s stream-starts-per-second KPI that indicates only if customers
cannot watch video streams in their application. While chaos engineering is used
by companies of all sizes, in all sectors — large tech firms (e.g., Microsoft, Amazon,
Google), big box retailers (e.g., Walmart, Target), travel companies (e.g., Expedia),
financial institutions (e.g., JPMC, HSBC), and media and telecommunications com-
panies (e.g., Conde Nast, media dpg, Netflix) [] — the cost of running
experiments in production is not the same for all these companies. For example, a
chaos experiment that prevents a user from reading an article in the New Yorker
or streaming a movie with Netflix is not the same as preventing a user from pur-
chasing a travel package with Expedia or performing a financial transaction with
HSBC. This industrial partner Foodly, one of the largest food delivery services in
the United States, chose SFIT specifically for this reason: to verify the correctness
of their application under fault during development, before deployment, without
impacting customers.

Academically, SFIT builds on the Directed Automatic Random Testing []
technique, which combines symbolic execution with concrete execution to explore
all possible paths of a monolithic application by synthesizing inputs that provoke
the application into new application paths. In contrast, SFIT provokes an application
into error-handling code paths by identifying the locations of method calls that may
fail and injecting faults.

6.2 Algorithm

First, some definitions will be presented to start describing the Service-level Fault
Injection Testing algorithm. Then, the algorithm will be presented, which assumes a
single functional test that results in the microservice application issuing a number
of RPCs when executed.

First, the definition of a fault configuration, provided to SFIT to inform it on which
faults should be explored, is presented. Then, definitions of how to test executions
are represented internally to SFIT.

Definition 15 (Fault Configuration). A fault configuration is a partial function from a
pair (s, p) to a set of fault specifications fs = {fi,..., fa}, where:

e s is the signature of the RPC;
e p is the invocation payload of the RPC, which may be empty and

e f isa fault specification: a client-specific representation of the fault that should be
injected into the application.

Algorithm 67

In reality, f; can be an arbitrary object indicating an exception to be injected with
a set of properties set on the exception (e.g., Google’s gRPC) or may alternatively
be the description of an HTTP error response containing the status code, body, and
(optional) response headers. It is up to the instrumentation to correctly interpret
and inject this fault, as the precise exception types that may be raised differ by
implementation language of the invoking RPC client (e.g., Java vs. Python gRPC.)

Definition 16 (Concrete Test Execution). A concrete test execution is a four-tuple
(t,d, f,r) that represents a concrete execution where:

e t is the functional test that leads to the invocations of those RPCs;

o disaset, suchthat {dy, ..., d,} is the set of distributed execution indexes representing
all of the RPCs executed by that functional test, t.

e fisa partial function from a distributed execution index d; to a fault injection specifi-
cations f;, for elements in d that indicates a fault was injected for the RPC represented

b]/ d;;

e r is a partial function from a distributed execution index d; to an RPC result for
elements in d that indicates the client-encoded response of an RPC invocation under
d.

Concrete test executions are sufficient for a replay of a test execution, given a
deterministic functional test. In short, as long as the application issues the same
RPCs, identified by the same DEIs, the same faults will be injected on those RPCs,
resulting in deterministic replay, given the same deterministic functional test.

Definition 17 (Abstract Test Execution). An abstract test execution is a triple (t,d, f)
that represents a partial concrete execution, where:

o t is the functional test that leads to the invocation of at least the RPCs in d;

o disaset, such that {d,,...,d;} is the set of distributed execution indexes representing
some of the RPCs executed by that functional test, t. This set is always a prefix of a
valid, well-formed execution of t: for example, the first 5 RPCs executed by a test that
executes 10 RPCs.

o f is a partial function from a distributed execution index d; to an fault injection
specification f;, for elements in d that indicates a fault has or should be injected for the
RPC represented by d;.

68 Service-level Fault Injection Testing

Abstract test executions are partial test executions that may or may not result
in more RPCs: for example, by injecting a fault, the application may respond by
executing subsequent RPCs on failure. When this does not occur, the abstract test
execution and its associated concrete test execution are equivalent.

Next, the search algorithm of SFIT is presented in Algorithm 1. This algorithm
repeatedly re-executes the test of the microservice application, recording the concrete
test executions associated with each abstract test execution. During this exploration,
new abstract test executions are derived that represent new failure scenarios to
explore: this is called scheduling and presented in Algorithm 2. This combined
process of search and scheduling is performed until the failure space is exhausted,
based on the provided fault configuration.

Algorithm 1: SFIT Algorithm: Search

1 Executed by SFIT at start of the search

Function Search(t : Test, c: FaultConfiguration):
Executes the initial, fault-free reference execution

w N

CurrentFaultConfiguration = ¢

CurrentConcreteTestExecution = ConcreteTestExecution()
CurrentAbstractTestExecution = AbstractTestExecution()
ExecTest(t)

ExploredAbstractTestExecutions.add (CurrentAbstractTestExecution)
ExploredConcreteTestExecutions.add (CurrentConcreteTestExecution)

O© 0 N S Ul W

10 | Explore the fault space while increasing it as new failure dimensions exist

11 while te = ToExploreAbstractTestExecutions.pop():

12 CurrentAbstractTestExecution = te

13 CurrentConcreteTestExecution = ConcreteTestExecution()

14 ExecTest(t)

15 ExploredAbstractTestExecutions.add (CurrentAbstractTestExecution)
16 ExploredConcreteTestExecutions.add (CurrentConcreteTestExecution)

Search. First, a reference execution — a fault-free execution of the test —is performed,
where the test executes normally unaffected by SFIT. During this execution a concrete
test execution is constructed that contains the DEI’s associated with every RPC
executed by the microservice application as a result of the test.

As a concrete test execution is constructed, a number of abstract test executions
are also constructed that are scheduled for execution. These abstract test executions

Algorithm 69

are only partial test executions: valid prefixes of the concrete test execution, up to
the execution point where they were created, and containing the locations of fault
injections. Effectively, these abstract test executions contain only the RPCs executed
by the application up to that program point in order to “fix” the execution to some
particular program point and then allow for derivation in control flow based on a
list of faults to be injected.

At least one abstract test execution is created for each RPC that is executed and
each fault that should be injected. Abstract test executions are explored iteratively
until exhausted, depicted formally in Algorithm 1.

Scheduling. Abstract test executions contain both the RPCs executed up to a
particular program point and the faults that should be injected for those RPCs.

Search is performed by executing each abstract test execution, which yield a
corresponding number of concrete test executions, of which may or may not extend
the abstract test executions that realized them. For example, an abstract test execution
may contain 4 RPCs, but by injecting a fault on the 4th RPC, the concrete test
execution contains a number of new, previously unobserved, RPCs, which were
invoked by application error handling code.

When these new RPCs occur as a result of fault injections — which do not exist in
the abstract test execution that is being executed — additional abstract test executions
are created which contain (A) a fault on the RPCs that resulted in the additional
RPCs and (B) a fault on each of the additional RPCs, for each fault in the fault
configuration. Effectively, the new abstract test executions all “fix” the execution to
the program point containing the injected fault, which resulted in the additional
RPCs, with each abstract test execution exploring a different fault on each of the
additional RPCs. This process is iterative, scheduling all possible fault configurations
for the search.

As abstract test executions are only generated once a program point is reached,
no abstract test executions are ever scheduled for unreachable program points, given
a fault configuration and deterministic test.

The creation of new abstract test executions is performed whenever an RPC is
executed. When executing a test with SFIT, each invocation of an RPC results in
two messages being sent to SFIT. First, a invocation message when the RPC client
issues the RPC; second, a invocation_received when the server receives the RPC.

This separation is necessary for protocol-specific reasons for both Google’s
gRPC and HTTP. First, when issuing calls with gRPC, multiple services may im-
plement the same gRPC specification and respond to the same method; therefore,
to properly inject faults on the appropriate service it is necessary to determine
precisely the service that terminates the call. For example, even thought a gRPC

70 Service-level Fault Injection Testing

Algorithm 2: SFIT Algorithm: Scheduling New Tests

1 Executed on SFIT any time the microservice application executes an RPC

Function OnRPCInvoked(d : DEI, s : Signature, p : InvocationPayload):

2
3 if d € CurrentAbstractTestExecution.d:
4 Add to the current concrete execution
5 CurrentConcreteTestExecution.d.add (d)
6 This RPC appears in abstract execution
7 if f = CurrentAbstractTestExecution.f(d):
8 Add to the current concrete execution with fault
9 CurrentConcreteTestExecution.f.add (d, f)
10 returnd, f
11 else:
12 Allow the RPC to execute as normal
13 return Noop ()
14 else:
15 If we should inject some faults...
16 if fs = CurrentFaultConfiguration (s, p):
17 Schedule for testing in subsequent executions...
18 for f € fs:
19 NewATE = CurrentAbstractTestExecution
20 NewATE.d.add(f)
21 NewATE.f.add (f)
22 ...only if we have not already scheduled for exploration
23 if NewATE ¢ ToExploreAbstractTestExecutions:
2 ‘ ToExploreAbstractTestExecutions.push(NewATE)
25 Allow to execute normally
26 return Noop ()

27 Executed on SFIT any time the microservice application finishes an RPC

28 Function OnRPCFinished(d : DEI, r : Response):
29 ‘ CurrentConcreteTestExecution.r.add(d, r)

Fault Injection Predicates 71

var response = rpc(service_a, method, args);

if wasFaultInjectedOn(service_b, method, args):
assertFalse(database.contains(record));
assertTrue(response.isFailure()));

else:
assertTrue(database.contains(record));
assertTrue(response.isSuccess()));

NN Uk N e

Figure 6.1: SFIT’s fault injection predicates are used to update a test to capture an applica-
tion’s behavior under fault. Yellow indicates added lines during SFIT process.

service might indicate that the method NotificationService.sendEmail is being in-
voked, that method might be implemented by both a O1dNotificationService and
aNewNotificationService where one might only want to perform fault injection on
a single service. Second, with HTTP, often requests are made using a hostname or IP
only: therefore, to properly determine the service SFIT must defer fault scheduling
until it knows the actual reported service name of the invoked host. In this case,
SFIT defers fault injection until the actual service name is known.

In this presentation, it is assumed that the same OnRPCInvoked method is used
in either case, as the logic remains the same and is tolerant to whenever clients
report RPCs (i.e., client invocation or server invocation) as long as a service name
is present. However, it is important to note that when testing third-party services,
the server invocation is not controlled and fault injection must be performed and
configured based on client configuration alone. Whenever an RPC completes, it
invokes onRPCFinished. This algorithm is depicted formally in Algorithm 2.

6.3 Fault Injection Predicates

As application developers apply SFIT to their functional tests, written to assume a
happy path execution of their application, their tests will fail as faults are injected.
Therefore, application developers will need to adapt these tests to account for the
behavior of their application under fault. The SFIT mechanism is called fault injection
predicates.

Fault injection predicates can be used in conditional statements placed in func-
tional test code to make assertions on application behavior dependent on whether
faults were injected.

For example, by wrapping assertions in statements such as the following;:

72 Service-level Fault Injection Testing

o “Was a fault injected during this test execution?”
o “Was a fault injected on a particular downstream service during this test execution?”
o “Was a fault injected on a particular RPC method during this test execution?”

o “Was a fault injected on a particular RPC method, with certain arguments, during
this test execution?”

In Figure 6.1, example usage of fault injection predicates to make a test capture
both the application’s behavior in and without the presence of faults is shown.
Here it is indicated that under a fault injection to a downstream RPC, the response
returned from the tested RPC should either succeed or fail, with writes performed to
the database accordingly. In yellow, the lines that would be added during the SFIT
process are highlighted. This process is not unlike the methods used by software
model checking [] or interactive theorem proving [], where developers
must encode all possible behaviors for completion.

Fault injection predicates use the current concrete execution to determine if
that RPC was subjected to a fault and returns a response to the test. SFIT can be
configured to generate all fault scenarios regardless of whether a previous fault
injection scenario passed or stopped at the first failure. As always, upon each test
execution with SFIT, all fault injection scenarios are re-executed and checked against
the test’s assertions.

6.4 Testing Process

Outlined below is the SFIT testing process:

1. Execute the developer’s functional test without fault injection.
Once the test is passing, proceed to fault injection.

2. Execute fault injection scenario from SFIT.
If the test fails, display failure to the developer with a log of failure and
fault injection details.

a) If a bug, resolve.
b) If not bug, encode application’s behavior under fault using recommendations.
c) Gotol.

3. If more fault injection scenarios remain, go to 2 only if the current test execu-
tion passed based on the developer specifications of application behavior
under fault.

Encapsulated Service Reduction 73

6.5 Encapsulated Service Reduction

To identify corner-case bugs, SFIT must ideally explore combinations of service
failures. To achieve maximum coverage of the failure space for a single functional
test, where service responses are deterministic, and there are no data dependencies
on previous failures, the number of test executions that are required is quite large.

A straightforward approach of injecting failures in each combination of service
requests requires executing tests in a magnitude that is exponential in the number of
service requests. However, it is possible to leverage the decomposition of an appli-
cation into independent microservices to reduce the search space without loss of
completeness dramatically.

6.5.1 Service Encapsulation

Let us revisit the Audible example that is presented in Figure 3.1. Excluding the
complete failure space for readability, let us consider just the failures of a subset of
the services: Audible Download Service (ADS) and its dependencies and Content
Delivery Service (CDS) and its dependencies.

When exploring failures of the ADS, SFIT must consider the failure of its three
dependencies: the Ownership, the Activation, and the Stats services. The entire
request is failed if either the Ownership or Activation service calls fail. However,
if the call to the Stats service fails, that failure has no impact on the result of the
request. After testing, it is known that any failure of the Ownership or Activation
service will cause the ADS to return a 500; however, a failure of the Stats service
will not impact the response of the ADS - regardless of its failure, the service will
return 200 as long as both Ownership and Activation provide a successful response.

With the CDS, at a minimum, SFIT has to consider the failure of the Asset
Metadata service independently, the failure of the Audio Assets independently, and
then the combinations of the ways each service can fail together. However, to fully
explore the failure space using our approach, SFIT must consider the failure of the
Stats service combined with all possible failures of the Asset Metadata service and
the Audio Asset service. These are failures that SFIT already knows the impact of
and should not have to be tested in combination. For example:

e SFIT already knows that a failure of the Stats service has no impact on the
ADS and

e SFIT already knows the impact of any combination of the Asset Metadata and
Audio Asset services failures.

74 Service-level Fault Injection Testing

It is critical, then, to identify a way to leverage our knowledge of service failures
and their impact on the services that take them as dependencies. To do this, SFIT
can take advantage of the following three key observations:

e First, SFIT must fully explore how a service’s dependencies can fail. This
ensures that SFIT understands the behavior of a single service when one or
more of its dependencies fail and what the resulting failures returned by that
service are. Referring to the Audible example in Figure 3.1, it is clear that SFIT
must fully explore the combination of the ways that ADS’s dependencies can
fail (as well as the way the CDS’s dependencies can fail, etc.)

e Second, when SFIT is about to inject faults on at least one dependency of two
or more different services, SFIT already know the impact that those failures
will have on the services which takes them as dependencies. Referring to the
Audible example in Figure 3.1, SFIT already knows what the ADS will return
when its dependencies fail in any possible combination, as SFIT has already
run that test. SFIT also already knows what the CDS will return when its
dependencies fail in any possible combination for the same reason. Therefore,
SFIT does not have to inject the fault at the dependencies. SFIT can inject the
appropriate response directly at the ADS or CDS.

e Third, SFIT has already injected that fault at that service, then the test is
redundant, as it has already observed that application behavior.
Referring to the Audible example in Figure 3.1, SFIT do not need to test the
Stats service failing in combination with failures of the Audio Assets or Audio
Metadata services, as SFIT already knows the outcome of those failures on
the services that take them as dependencies; SFIT has also already observed
those outcomes.

Algorithm 3 presents the encapsulated service reduction algorithm (ESR). This
algorithm reduces the exponent in the size of the test execution space from the total
number of service requests to the maximum number of outgoing requests from any given
service. In Figure 3.1, this reduces the exponent from 8 (the total number of edges)
to 3 (the maximum branching factor.) Since microservice applications typically
scale in depth rather than breadth, dynamic reduction makes SFIT tractable.

The property of microservice applications that enables this style of dynamic test
case reduction is referred to as service encapsulation and is enabled by DEI’s indexing
algorithm.

Definition 18 (Service Encapsulation). Service encapsulation states that invoked down-
stream dependencies of a service can only indicate failure or success to their direct caller, and

Takeaways 75

as long as they do not expose their internal state to the invoker, the invoker can only assert
on the responses that are returned to the caller by those dependencies.

Therefore, an invoking Service A and a Service B exhibiting this property is said
to be encapsulated by this service: in short, Service A is said to encapsulate Service
B; conversely, Service B is encapsulated by Service A. When this is true, any service
invoking an RPC to Service A can only infer the behavior of Service B through
Service A’s behavior.

Encapsulated service reduction is automatic and requires no additional infor-
mation from the application developer. It is important to note that encapsulated
service reduction is not sound in general and refers to our assumptions above on the
behavior of a single functional test: service responses are deterministic for a single
functional test, and service code does not contain data dependencies on previous
failures.

It is important to note that Encapsulated Service Reduction is not sound in general
and refers to our assumptions above on the behavior of a single functional test:
service responses are deterministic for a single functional test, and service code
does not contain data dependencies on previous failures.

6.5.2 Algorithm

This algorithm is executed each time an abstract test execution is about to be executed
by the SFIT search. First, every concrete test execution that has already been executed
is searched to determine if there is a matching concrete execution where, for each
fault, the following criteria are met: either a fault was injected on an encapsulated
service that resulted in the encapsulating service returning a failure response that we
intend to inject through fault injection, or a fault is (or should be) directly injected on
that request. If that criterion is true, ESR determines that the test case is redundant
and does not execute it.

This results in the following augmented search algorithm for SFIT, presented in
Algorithm 4: SFIT with ESR.

6.6 Takeaways

Service-level Fault Injection Testing (SFIT) is one of the core contributions of this dis-
sertation: a fault injection technique for identifying resilience issues in microservice
applications.

SFIT achieves this by leveraging DEI, a technique for uniquely identifying the
RPCs executed by a microservice application, to systematically inject a list of faults

76 Service-level Fault Injection Testing

Algorithm 3: SFIT Algorithm: Encapsulated Service Reduction

1 Function ShouldSkip(a: AbstractTestExecution):

2 Start by searching every concrete execution we have already run...
3 for ConcreteTestExecution € ExploredConcreteTestExecutions:
4 found = True
5 For every RPC executed in the abstract test execution provided...
6 ford e a.d:
7 If we want to inject a fault in our execution...
8 if f =a.f(d):
9 ...but the fault we want to inject already happened organically...
10 if f € ConcreteTestExecution.r:
11 ...then, we might be able to skip this execution
12 found = found && True
13 else:
14 ...but if the injected fault doesn’t match our response...
15 ...we have to run it.
16 found = found && False
17 If every fault we want to inject occurred organically (or synthetically)
18 in another test execution we already ran, we can definitely skip it.
19 if found:
20 | return True
21 Otherwise, we have to run it because it’s different...
22 return False

on each of (and all combinations thereof) those RPCs. This forces application
developers to think about failure scenarios they may or may not have been aware of
and ensure their application does what they expect when those failures inevitably
occur, in development and before application code is deployed to production.

To account for these failures, application developers are prompted to use fault in-
jection predicates: a mechanism for encoding the failure behavior of their microservice
application in the existing happy path tests of their application.

When possible, SFIT can avoid executing redundant test cases where faults are
injected, and the outcome of those faults is already known because of service en-
capsulation. Service encapsulation is a core property of microservice applications
and the way they are developed: failures of downstream services are often hidden

Takeaways 77

Algorithm 4: SFIT Algorithm: Search with ESR

1 Executed by SFIT at start of the search
2 Function SearchESR(t : Test, c: FaultConfiguration):
3 Executes the initial, fault-free reference execution

CurrentFaultConfiguration = ¢

CurrentConcreteTestExecution = ConcreteTestExecution()
CurrentAbstractTestExecution = AbstractTestExecution()
ExecTest(t)

ExploredAbstractTestExecutions.add (CurrentAbstractTestExecution)
ExploredConcreteTestExecutions.add (CurrentConcreteTestExecution)

© 0w N o U

10 | Explore the fault space while increasing it as new failure dimensions exist

11 while te = ToExploreAbstractTestExecutions.pop():

12 CurrentAbstractTestExecution = te

13 CurrentConcreteTestExecution = ConcreteTestExecution()

14 if ! ShouldSkip(CurrentAbstractTestExecution):

15 \ ExecTest(t)

16 ExploredAbstractTestExecutions.add (CurrentAbstractTestExecution)
17 ExploredConcreteTestExecutions.add (CurrentConcreteTestExecution)

behind, or within, the responses of their ancestors in the microservice graph. This
optimization can reduce the number of test cases needed for full coverage of the
faults exhibited in application code upon dependency failure of a downstream
service.

In the next chapter, an evaluation of SFIT is presented, using the other founda-
tional contribution of this thesis: the constructed microservice application corpus
taken from industry examples.

Chapter 7

Evaluating SFIT: Corpus

“If you can talk brilliantly about a problem, it can create the consoling illusion
that it has been mastered.”

Stanley Kubrick

In this chapter, a synthetic evaluation of both Distributed Execution Indexing (DEI)
Service-level Fault Injection Testing (SFIT) is presented.

First, the experimental configuration is presented. This section describes the
prototype implementation of SFIT, called FiLisuster. This initial implementation is
written in the Python programming language to match the implementation language
of the synthetic microservice corpus and is herein referred to as Python FiLisuster.
This is done to distinguish it from the second prototype implemented in Java, which
will be discussed in a subsequent chapter.

Next, an evaluation of DEI is presented using the microservice corpus. This
evaluation shows that DEI encodes the minimal amount of information required to
correctly identify RPCs in a microservice application both uniquely and deterministi-
cally. Specifically, this is demonstrated by the systematic removal of each component
in the DET highlighting the violations in either soundness or completeness (in SFIT)
that result from their removal.

Next, SFIT is evaluated on the corpus using the DEI’s evaluated in the previous
section. First, it is shown that SFIT can increase code coverage by automatically
generating the necessary tests to exercise the code paths associated with RPC failure.
This shows that in addition to the increased coverage, the SFIT can identify all of
the synthetic, industry-inspired bugs seeded into the corpus applications. Then
ESR is evaluated, and it is shown that ESR can significantly reduce the testing
overhead by removing redundant test cases when microservice application graphs
are structured accordingly: depth over breadth. From there, it is shown that SFIT

79

80 Evaluating SFIT: Corpus

can avoid expensive mock creation that would typically be manually created by
automatically generating those test cases. Finally, it is shown that the execution of
SFIT is reasonable enough to be integrated directly into either the local development
or continuous integration environments to identify application resilience issues in
development, and before deployment of application code to production.

7.1 Experimental Configuration

All experiments in this section were performed using the prototype implementation
of FiLisuster in Python. This implementation is called Python FiLisuster and is
available as open source []

As all the services in the constructed corpus communicate using HTTP, the
popular HTTP requests library was used. To enable fault injection, the opentelemetry
instrumentation library for Python was extended to support fault injection and
enable metadata assignment to requests. To identify the target of requests made to
services via URL, the opentelemetry instrumentation library was used for Flask to
record the service where instrumented requests were terminated.

This instrumentation assigns distributed execution indexes and vector clocks |
] to each request to uniquely identify each request. This information is also
forwarded to each service through the instrumentation. Distributed execution in-
dexes correlate calls between different test executions for dynamic reduction; vector
clocks are used to identify the dependencies of a particular service.

This instrumentation communicates with the FiLiBUSTER server, as shown in
Figure 7.1. The FiLiBusTER is responsible for starting all the services associated
with an application in either local processes, Docker Compose, or Kubernetes. The
FiLiBusTER server then runs the functional test, records and maintains the stack of
test executions to execute, performs functional test assertions, reports test failures,
and aggregates test coverage. The FiLiBusTER client library, written in Python which
communicates with the FiLisusTer server provides an API that functional tests can
use to write conditional assertions and allows for test replay using a counterexample
file. Test coverage is aggregated from each service by the server.

FILIBUSTER requires a static analysis to determine the types of failures each service
can return. In this prototype implementation, a purely lexical static analysis that
over-approximates these errors by performing abstract syntax tree traversals on
the source code of each service is used. This analysis is highly tailored to how
Flask applications are written by identifying raise statements that throw exceptions
converted to HTTP responses containing status codes indicating error by Flask. (e.g.,
ServiceUnavailable, NotFound.) If this type of analysis is impossible, developer’s

Experimental Configuration 81

Filibuster CLI ication D AppRPC —>

Functional Test i

Filibuster D AppRPC Response ::===»
IPC —>

FilibusterRPC -—-

RPC server instrumentation

RPC clientinstrumentation fr=======——c—m— e m e m

g 1

E 1

: 1

: RPC

H request received

~+-{ RPCserverinstrumentation |-========== Filibuster Server
1
1
1
1
1
1

RPC

0 A N
>| RPC client instrumentation |- ---------------------

AWS S3

Example Microservice Application with FILIBUSTER

Figure 7.1: Architecture of Python FiLiBUSTER

can opt to test all potential failures, as a finite number of HTTP status codes indicate
the error.
This implementation of FiLisusTer can inject the following faults (or failures):

o Caullsite exceptions.
Callsite exception thrown by the requests library that indicates conditions like
connection error or timeout. For all exception types, FiLisuster can condition-
ally contact the other service before throwing the exception. For timeouts,
FiLiBusTER can conditionally wait the timeout period before throwing a timeout
exception.

e Error responses.
Error responses returned from a remote service using standard HTTP error
codes that indicate conditions like Internal Server Error or Service Unavailable.
For each error code, FiLiBusTER can return an associated body conditionally.

Each is configurable when running FiLisuster. This enables developers to run
a subset of these errors during local development, a more significant subset on
push to a feature branch, and the complete subset as a nightly job. The prototype
implementation of FiLiBusTEr was configured to run in AWS CodeBuild following
this design, allowing for rapid feedback to developers and complete coverage nightly.

82 Evaluating SFIT: Corpus

As FiLiBusTER has been written using a client-server architecture, cross-language
support is possible and currently exists for the JUnit testing library in Java for HTTP
and Google’s gRPC: this implementation is discussed in a subsequent chapter. All
communication between instrumentation and the FiLisusTER server is through a
language-independent protocol; anything language-specific is done in the instru-
mentation library.

7.2 Distributed Execution Indexing

In this section, Python FiLisusTER is used as an evaluation of DEI to demonstrate that
the innovations in DEI are required for a microservice application fault injection
approach to be both sound and complete. In short, without the inclusion of the
invocation count, call stack, and invocation path, a fault injection analysis such as
SFIT can violate either soundness (where faults are injected on the incorrect RPCs),
completeness (where faults are not injected on RPCs they should be), or both.

Next, an example application in Java is written to demonstrate that nondeter-
minism is a problem that any mechanism that identifies RPCs for the target of fault
injection must deal with. This application is tested using FiLisuster by extending the
FiLiBustER prototype with support for Google’s gRPC in Java. Then, it is shown that
through the inclusion of the invocation payload, DEI can deal with nondetermin-
ism while avoiding the expensive instrumentation required for control of the Java
scheduler; however, only when applications do not issue concurrent RPCs to the
same RPC service, method, from the same call site, with the same RPC arguments.

While these innovations are evaluated in the context of the prototype imple-
mentation of SFIT, FiLiBusTER, any request-level fault injection technique (e.g., LDFI,
3MILEBEACH, etc.) are susceptible to these issues. Therefore, DEI is a general solution
for any request-level fault injection technique for addressing the identification of
RPCs for fault injection in a microservice application.

7.2.1 Required: Invocation Count, Stack, and Path

The constructed corpus is used to demonstrate the need for invocation count, call
stacks, and RPC path. As none of the industrial examples in this corpus contained
the coding patterns discussed in Chapter 5, the cinema examples from the corpus
are used for this evaluation instead.

With regard to the cinema examples, one cinema example in particular, cinema-3,
exhibits a pattern that requires the inclusion of the call stack or invocation count. To
demonstrate the need for both, combining the structure of cinema-6 with retries on

Distributed Execution Indexing 83

Cinema All NoIC NoStack NolC No Path,

Example & Stack IC & Stack
cinema-3 7 i 7 - -
cinema-9 5 5 5 3 -
cinema-10 6 6 6 6 5

Table 7.1: Results demonstrating all techniques must be combined for correct identification.

tailure from cinema-1 is necessary. It is also necessary to extract the RPC invocation
into a helper function.

To demonstrate the need for inclusion of the execution path, it was required to
combine the structure of cinema-2 with the use of default responses on failure from
cinema-5. These new examples are included in the corpus and referred to as cinema-9
and cinema-10, respectively. These are not unrealistic, as the changes were taken
from other examples in the corpus and combined with existing examples.

To demonstrate, recall that cinema is comprised of four services, as depicted in
Figure 4.1. The users service retrieves the bookings for a user: this involves an RPC
to the Bookings service and then to Movies service for each retrieved booking. In
the two variations, either:

1. the Users service issues an RPC to the movies service after the response from
the Bookings service, or

2. the Bookings service issues an RPC to the Movies service directly.

For testing, a functional test that retrieves a user’s movie bookings is used. In
terms of fault injection specifically, a single connection error exception is injected
for each RPC.

The evaluation results are presented in Table 7.1. For clarity, redundant results
are omitted: for example, if a test execution produces either unsound or incomplete
behavior without including an invocation count. No results are presented where
invocation count and stack are excluded.

Invocation Count. For this experiment, cinema-3 is used.

In cinema-3, the RPC from the Users service to the Bookings service is performed
in a loop and re-executed once on failure.

Exhaustive search requires seven executions. Without the invocation count, only
four executions are performed.

84 Evaluating SFIT: Corpus

SFIT is incorrect without invocation counting:

o Unsound.
Each RPC in the loop will be assigned the same identifier, SFIT will inject
a fault on zero or all iterations.

o [ncomplete.
Requests that occur due to any iteration, not the 1%, will not have faults

injected.

Call Stack. For this experiment, cinema-9 is used.

In the event of failure of the 1%t RPC from the Users service to the Bookings
service, it will mark the request as failed and try that request later from a different
call site. This differs from the loop where the same call site is used. Each call site
uses a helper function to issue the RPC to ensure the stacks differ.

Exhaustive search requires five executions. Without call stack, only three execu-
tions are ran.

SFIT is incorrect without call stack inclusion:

o Unsound.
As each call invocation of the helper’s RPC will be assigned the same
identifier, SFIT will either inject a fault on both or neither.

o Incomplete.
Requests that occur as a result of the 1% invocation will not have faults

injected.

RPC Path. For this experiment, cinema-10 is used.

In the event of a failure of the Bookings service, a default response is used in
place of the failure and the Movies service is contacted directly by the Users service.

Exhaustive search requires 6 test executions. Without the RPC path, only 5
executions are performed.

Distributed Execution Indexing 85

SFIT is incorrect without RPC path inclusion:

e Unsound.
Since the bookings RPC to movies and the users RPC to movies share the
same identifier, SFIT will either inject a fault on both or neither.

o Incomplete.
As SFIT will always fail the 2nd RPC to movies, the successful case is not
explored.

7.2.2 Nondeterminism is a Problem

In order to understand the impact of scheduling nondeterminism within the JVM
on correct identifier assignment, a small example was constructed with the Armeria
library for Java that contained two services: Hello and World.

In this example, the World service exposed a single endpoint that returned a
String constant when it received an RPC. The Hello service exposed an endpoint
that, when it received an RPC from the test harness, would launch a configurable
number of threads, each that issued an RPC to the World service, and then wait
for them to complete. Each thread was defined as a class in Java, where the Hello
service would create instances of this class of in a loop. This ensured that the call site
of the RPC was the same and the stack trace of the call site were identical. All RPCs
were made the same service and differed only in the payload, which contained the
identifier of the thread determined by thread creation order.

For this experiment, Python FiLisuster was extended with support for Java,
Google’s gRPC library. Then, a server stub at the World service was installed to
record the execution indexes generated by the Hello service. Then, the DEI algorithm
was reconfigured to include the thread creation order; therefore, the payload differed
only by this identifier.

This test application was executed for varying numbers of RPCs (2, 4, 8, 16, 32,
64) for 100 iterations each. The thread pool size was also fixed at the Hello service
at size 2. For each iteration, it was recorded whether or not the execution index
assignment matched the thread creation order by examining the execution index
payload values. The results are presented in Figure 7.2.

With only 2 RPCs, 44% of the tests exhibited an RPC execution order that did
not match the creation order; by 64, 100% of the RPCs did not match the creation
order. With 16 RPCs, this rose to 80%; by 32 RPCs, this was at 96%, and by 64, 98%
of the RPCs did not match the creation order.

86 Evaluating SFIT: Corpus

100 -

To-

Type

N mxmymh aDE}
ik SDEt

25 =

% Deterministic Schedules (per 100 schedules)

“ @ 3
MNumber of Concurrent RPCs

Figure 7.2: Percentage of executions with deterministic assignment for two threads.

Even in the presence of relatively low amounts of concurrency, scheduling
nondeterminism is a problem for SFIT.

7.2.3 Payload Inclusion Distinguishes

Using the same example, the key insight of asynchronous DEI could be verified:
including the payload into the identifier for each RPC invocation was sufficient for
distinguishing these concurrent, inter-service RPCs. With asynchronous DEI, all
RPC identifiers were unique and deterministic, as shown in Figure 7.2. Therefore,
scheduling nondeterminism was not an issue.

Payload is sufficient for distinguishing concurrent, inter-service RPCs
in microservice applications, assuming that these RPCs will not share the
same payload when issued to the same service and method with the same
parameters.

Service-level Fault Injection Testing 87

7.3 Service-level Fault Injection Testing

Table 7.2 presents results from running Python FiLiBusTER on the corpus. For this
evaluation, it is assumed that all RPCs can throw a connection error exception. When
a timeout is specified, timeout exceptions are also considered. Any service-specific
failures are also included, as determined by the Python FiLiBusTER static analysis.

All examples were run on an AWS CodeBuild instance with 15 GB of memory
and eight vCPUs. At the start of the Python FiLisuster run, all of the services
were started for each example; Python FiLiBuster waited for those services to come
online,e, and the services were manually terminated at the end of the run. As most
of the applications in the corpus have no side effects, they seed the system with
values and verify they can be read so the services are not restarted between test
executions. However, this option is available. Given that the cost of the service
restart is fixed, that cost is excluded when comparing the system’s performance
with and without encapsulated service reduction.

7.3.1 Tests Generated and Increased Coverage

To determine the benefit to developers in identifying resilience issues, it makes sense
to consider the number of tests generated by Python FiLisuster and the resulting
increase in code coverage.

The “Test Gen/ESR Gen” column presents the number of tests generated and
executed by Python FiLiuster. Since each example only has a single functional test,
these numbers include that test in the total. This is because Python FiLiBusTer must
execute the initial passing functional test first to identify where to begin injecting
faults. In all of the corpus examples that contained bugs, the bugs could be identified
using Python FILIBUSTER.

The “Coverage After” column shows the increase in statement coverage. By
generating the tests that exercise possible failures, Python FiLisusTer can increase
the coverage of the application. These numbers only account for coverage gained
using the functional tests. The generated tests increase coverage related to error-
handling code which is not exercised by the unmodified functional test, which does
not consider failure.

SFIT was able to prevent developers from having to write time-consuming
mocks by automatically generating tests that introduce failures at all of the
remote call sites.

As demonstrated by the Netflix example, some of these applications are large
enough to require many tests to ensure coverage of the failure space properly. For

88 Evaluating SFIT: Corpus

Example Test/ Coverage Time ESR TG
ESR Gen After w/ESR Overhead Overhead
(%) (s) (ms) (ms)
cinema-1 9/9 90.72 8.83 0.46 0.60
(-0) (+5.67) (+1.16) (0.02) (0.06)
cinema-2 10/9 90.76 8.81 0.43 0.64
(-1) (+5.64) (+1.15) (0.01) (0.06)
cinema-3 91/37 91.08 13.21 34.10 4.09
(-54) (+6.43) (+5.54) (0.02) (0.04)
cinema-4 34/21 91.34 12.11 3.25 2.31
(-13) (+8.17) (+4.23) (0.01) (0.06)
cinema-5 25/25 90.72 11.17 2.23 1.57
(-0) (+5.16) (+3.51) (0.01) (0.06)
cinema-6 41/41 91.35 13.99 591 2.57
(-0) (+9.05) (+6.28) (0.01) (0.06)
cinema-7 45/45 91.28 14.41 6.37 2.71
(0) (+6.64) (+6.71) (0.01) (0.06)
cinema-8 21/21 92.70 10.47 1.66 1.37
(-0) (+8.33) (+2.88) (0.01) (0.06)
Audible 69/31 96.04 15.28 13.35 4.72
(-38) (+12.75) (+6.35) (0.01) (0.06)
Expedia 17/17 98.54 9.87 1.15 1.06
(-0) (+15.33) (+6.35) (0.01) (0.06)
Mailchimp 135/134 98.96 59.83 473.48 44.07
(-1) (+11.54) (+52.01) (0.02) (0.32)
Netflix
-no bugs 1606/1603 96.31 513.83 94566 6748.93
(-3) (+17.25) (+504.85) (0.09) (4.20)
-w/ bugs 18653/4670 97.38 2303.84 748750 62100.34
(#2, #3) (-13983) (+15.67) = (+2293.8) (0.07) (3.32)
- w/ bugs 18653/46 70 97.38 2363.84 744052 60002.91
(#1, #2,#3) (-13983) (+15.67) = (+2353.8) (0.07) (3.31)

Table 7.2: Python FiLiBustER evaluated on the corpus. Includes the number of generated
tests with and without encapsulated service reduction; coverage before and after using
Python FiLisustER, overhead of encapsulated service reduction algorithm, and overhead of
test generation.

Service-level Fault Injection Testing 89

most organizations, manually writing this many tests without a system to generate
these tests automatically would be expensive in terms of development time. Similarly,
the cost of test adaptation is also low. In the Netflix example, Python FiLiBusTer
executed 1,606 tests but required only nine fault injection predicates to capture all
behavior. SFIT also found all of the bugs in a development setting without running
chaos experiments in a live production environment.

As discussed in our section on corpus creation, all of these bugs were discovered
using chaos engineering. In fact, these use cases were used to advocate for the
adoption of chaos engineering. Using Python FiLiBusTER, chaos engineering can be
avoided.

7.3.2 Encapsulated Service Reduction

The “Test Gen/ESR Gen” column shows the benefits of encapsulated service re-
duction: yellow cells are used to identify impact; green cells are used to identify
significant impact. Encapsulated service reduction excels when graphs have more
depth and less breadth.

In the Audible example, which has a service decomposition that resembles the
manner in which the same application might be built a in monolithic style, there
are deep paths containing nested requests that can allow Python FiLiBusTER to avoid
running redundant test executions. Effectively, ESR takes advantage of the natural
compositionality in the application.

However, in the Netflix example (without bugs), where a wide fanout is used
and each data dependency is relatively independent, the graph has an enormous
breadth with no depth. In this case, all combinations of failures must be tested, as
the control flow in the application could be based on a request failure.

Furthermore, in the Netflix example (with bugs), where deeper paths are intro-
duced through additional fallback behavior, the benefits of encapsulated service
reduction become valuable — only 25% of the tests have to be executed to reach the
same failure coverage.

When applications are structured with depth over breadth to the service
graph, they can significantly benefit from encapsulated service reduction.

This occurs because our design can observe the behavior of services when their
dependencies fail earlier in the exploration of the failure space — this information
can be used to avoid running subsequent tests where that behavior is already known.
This insight can guide the design of microservice architectures to decrease the cost of

90 Evaluating SFIT: Corpus

testing — deeper service graphs allow for the reuse of results across test executions.
This reduces the overall test time required to exhaust the space of possible failures.

7.3.3 Mocks

During the initial corpus implementation, unit tests were written for each service in
each example using mocks to account for possible remote service failures. When
writing these tests, only independent failures were considered. Refer to Figure 3.1
and consider the Audible Download Service. In this example, unit tests were only
written, each containing a mock for the failures of the three dependencies: Owner-
ship, Activation, and Stats. The list of service-specific failures is omitted here, and
the reader referred to the diagram for the list; for exceptions, a mock was written
for each of the two exceptions: Timeout and ConnectionError.

Not only was this process time-consuming, from learning the mocking frame-
work to writing and verifying they worked correctly, but it was also a significant
amount of additional code. These failures also under-approximate the actual failures
that could occur in the application: mocks that verified all possible combinations
of failures were not written. For example, the failure of the Stats service and the
Asset Metadata service would require a combination of two mocks on two different
services. As an example of how much code is required to write these mocks, the im-
plementation of all Netflix services was 936 LOC. An additional 743 LOC (+79.3%)
of test code was written to verify failure behavior.

SFIT can be used to verify resilience without the time-consuming, ad-hoc,
and error-prone effort of writing mocks for what failures the developers
believe are possible.

Python FiLiBusTer can automatically generate these tests with minimal effort and
accounts for more complicated mocking scenarios, where multiple mocks across
different services are required to execute a particular error-handling code path.

7.3.4 Execution Time

The “Time w/ESR” column shows the execution time with encapsulated service re-
duction enabled. This column shows the total execution time for all tests, excluding
setup and tear-down time. The difference between running the initial single func-
tional test and running all of the tests generated by Python FiLisuster is presented
in parentheses.

Service-level Fault Injection Testing 91

Comparing this difference to the number of tests generated and executed with
encapsulated service reduction, itis clear. It is expected that the execution time scales
linearly with the number of tests that must be performed. This per-test execution
time accounts for starting a Python interpreter, performing whatever setup and
tear-down is required, and executing the test.

In the “TG Overhead” column, the total overhead (in milliseconds) for test
generation is presented. This test generation process, running inside the Python
FiLiBusTER server, schedules new test executions each time a new request is reached,
and the Python FiLiBusTER server learns about this call through the instrumentation
call from the service. As is apparent, this overhead is minimal. The overhead
for each generated test is presented in parentheses, which in the worst case is 3.2
milliseconds.

In the “ESR Overhead” column, the total overhead (in milliseconds) introduced
by the encapsulated service reduction algorithm is presented. This algorithm has
to, for each test that is generated, determine if this test is redundant with a previous
test execution. As is apparent, this overhead is minimal. The overhead per test is
presented in parentheses: in the most complicated examples, it is 90 microseconds.

SFIT’s execution time scales linearly with the number of generated tests.

However, the test generation overhead is significantly less than the cost of the
development time required in manually writing these tests using mocks. Addition-
ally, Python FiLiBuster provides higher coverage by automatically writing mocks
for combinations of failures across service boundaries.

7.3.5 Misconfigured Timeouts

To identify misconfigured timeouts, where Service A calls to Service B with a
timeout that is less than Service B’s timeout to a Service C, is performed by sleeping
the timeout interval plus one additional millisecond before returning a Timeout
exception. This ensures that Python FiLisuster waits at least long enough to account
for the timeout interval.

In Figure 7.2, the difference in execution time when testing timeouts is high-
lighted in red. To identify Netflix bug #1, Python FiLiBusTer must execute the
timeouts while sleeping the timeout interval. Compared to the execution where
timeouts are not considered, the difference in time of the cumulative timeout interval
during testing can be observed.

92 Evaluating SFIT: Corpus

SFIT can detect incorrectly configured timeouts at the cost of additional
execution time, equivalent to the injected timeout duration.

7.4 Takeaways

In this chapter, an evaluation of Service-level Fault Injection Testing (SFIT) was pre-
sented using the initial prototype implementation of SFIT in Python, FILIBUSTER.

Using the synthetic microservice application corpus constructed in Chapter 4,
it was first demonstrated that Distributed Execution Indexing (DEI) is a necessary
foundational technique for the identification of RPCs executed, for fault injection,
in a microservice application.

DEI’s provide both a sound and complete method for enabling request-level
(e.g., RPCs) fault injection techniques while ensuring that repeated execution of
the same application path yields the same identifiers enabling both exhaustive
search and deterministic replay. DEI also address RPC execution nondeterminism
in microservice applications, under certain design restrictions, while avoiding the
necessity of scheduler control in managed VMs: common in distributed system
testing but impractical in microservice applications composed of many different
services that are implemented in other implementation languages.

SFIT was then evaluated against the synthetic microservice application corpus.
It was shown that SFIT can identify all application bugs seeded into the synthetic
microservice corpus at lower cost, and in development compared to existing fault
injection techniques typically performed in production. By leveraging an emer-
gent property of microservice applications and the way they are developed, service
encapsulation, DEI’s can be used in SFIT to further reduce the overhead in testing
microservice applications for resilience by avoiding redundant test cases when
testing the application wholesale, end-to-end. This test case reduction technique is
referred to as Encapsulated Service Reduction.

In short, SFIT provides an efficient mechanism for detecting resilience bugs,
in the development environment and before deploying application code, when the
application can be tested end-to-end in the development environment.

Chapter 8

Industrial Microservices: Foodly

“I learned a long time ago that reality was much weirder than anyone’s
imagination.”

Hunter S. Thompson

As discussed in the background and related work, designing a fault injection
technique for microservice applications is only half of the problem: many fault
injection techniques have been created in academia but have failed to find adoption
with industry practitioners as their designed was mismatched with how application
developers design, develop, deploy, and maintain their microservice applications.

To address this deficiency, it was first necessary to identify an industry partner
interested in using fault injection testing to improve the resilience of their microser-
vice application. Then, it was necessary to determine if the designed approach was
compatible with how they develop and test their services. Finally, it was necessary
to determine if the approach could identify application bugs related to resilience in
their application. Therefore, and towards that end, a partnership was established
with Foodly. Foodly operates one of the largest food delivery service in the United
States using a microservice application comprised of over 500 different services.

This chapter presents background material on Foodly: how they build their
microservice application, how they remain resilient to faults, and why, from their
perspective, existing industrial fault injection techniques are not sufficient or appro-
priate for their consumer product.

93

94 Industrial Microservices: Foodly

8.1 Foodly

Foodly is a food ordering and delivery consumer product built using a microser-
vice architecture comprised of over 500 services, primarily written in the Kotlin
programming language. Foodly’s decision to migrate from a monolithic to a mi-
croservice architecture to improve developer productivity at scale. Each service in
Foodly’s microservice application platform provides a specific set of functionality
that is grouped by business logic (e.g., ordering, delivery), and an independent
team manages the software life cycle for those services. Services at Foodly primarily
communicate using Google’s gRPC, with some legacy communication occurring
over HTTP. Services are deployed when new code is ready for release, with around
100 unique deployment events occurring daily.

Each service’s functionality is controlled at runtime using an experimentation
framework that allows features to be deployed and then gradually enabled for
customers. This is done to minimize the impact of application bugs and allow
for experiments that adversely impact the business to be disabled, all without
redeploying. These experiments are tested independently but run concurrently
in production. There can be hundreds of active experiments running across the
deployed application simultaneously. The combination of frequent deployments
and active experiments means that the system is constantly in flux and, as a result,
no specification of the end-to-end system behavior exists.

8.2 How Foodly is Resilient To Faults

Foodly’s microservice application must remain resilient to faults. For example, in
the case of bad deployments, where application code that contain bugs or is prone
to crashing and spurious failures due to underlying infrastructure issues such as
container failures and network anomalies. At Foodly, and many other companies
that operate microservice applications, this reliability is ensured through several
different techniques, working in concert and with the primary goal of minimizing
the impact of failures in production.

Several techniques are employed to mitigate the impact of bad deployments:
container orchestration, canary deployments, load balancing, probes, and auto-
scaling rules. Container orchestration is used to support rolling deployments of
services where possible. Canary deployments and bulkheads detect bad releases
as early in the deployment process as possible while minimizing the impact of
these bad deployments. Services are deployed into replica sets, and load balancing
distributes the load across all service instances within a replica set. Services within
a replica set are automatically checked using startup, liveness, and readiness probes

Why Not Chaos Engineering? 95

to detect malfunctioning services for automatic removal from the replica set. Auto-
scaling rules and restart policies ensure that a minimum set of nodes in a replica
set is operational at a given time. These techniques ensure that services are online
and responding as much as possible by minimizing the impact of bad deployments
through detection and automatic rollback.

Retries, load shedding, and circuit breaking are employed for spurious failures.
Foodly’s custom RPC client automatically retries RPCs in the event of failure, except
timeout failures, which may indicate a failure or slowdown of a transitive depen-
dency. Load shedding is employed by each service to ensure that services refuse
(i.e., short-circuit with an error response) incoming RPCs when the service is either
already overloaded or at risk of becoming overloaded should they process the incom-
ing RPC. Circuit breakers are used at each service to prevent repeated invocation
of a downstream dependency that may be malfunctioning or otherwise failing by
dynamically re-configuring the application to short-circuit the RPC with an error
until the remote service begins functioning correctly again. These techniques ensure
that spurious failures are mitigated through retries until the application can be
reconfigured to avoid invocation to these failing or failed dependencies until the
failures are resolved.

While these techniques for minimizing the impact of spurious failures provide
reliability at scale, they are primarily reactive approaches, specifically, responding
to failures as quickly as possible to either isolate the failure’s effect or degrade the
application gracefully. However, they do not account for failures observed by the
application until the application is reconfigured or failures propagated under that
configuration. Therefore, developers are left to answer the following questions:

e What does a service return to its callers when one of its downstream depen-
dencies returns an error due to active load shedding?

e What does a service return to its callers when one of its downstream depen-
dencies is returning an error because the circuit breaker is open?

e What does a service return to its callers when one of its downstream depen-
dencies is slow or returning an error before load shedding or circuit breaking
has been activated?

8.3 Why Not Chaos Engineering?

Frequently, to answer questions of resilience, the operators of large, industrial
microservice applications turn to chaos engineering. Chaos engineering is a coarse-
grained fault injection technique typically performed in an environment where the

96 Industrial Microservices: Foodly

entire end-to-end application can be tested — for example, staging or production
— pioneered by Netflix when moving to the cloud. While chaos engineering is
excellent at identifying infrastructure issues that can adversely affect microservice
applications, it is somewhat lacking in its ability to identify application bugs related
to resilience. This is due to the risks, cost, and granularity involved in this style of
large-scale experimentation.

First, concerning the risks, when an experiment is not well designed or is scoped
too broadly, it might adversely affect the customer experience, for example, by
preventing a consumer from making a purchase. For Foodly, this is not an option.
Second, the cost of running and monitoring chaos experiments can be prohibitive.
Therefore, the number of experiments that can be run and the frequency of those
experiments are pretty limited. It is impossible to run a set of experiments of this
style per-commit or even daily. Even after fully automating chaos experiments
and removing any manual overhead in monitoring and rollback, Netflix concluded
that they could not run experiments fast enough to cover all the experiments they
wanted. Third, if the analysis of these experiments is performed too coarsely — for
example, by examining the volume of purchases relative to a control group — minor
variations, such as a single small group of customers being unable to purchase due
to a latent application bug that is activated by fault injection, may go unnoticed. As
active experimentation of this style is prohibitive for Foodly for these very reasons,
Foodly chose SFIT to identify application bugs related to resilience, in development,
before deployment of application code to production.

8.4 How Changes at Foodly are Tested

To set the context of an evaluation of SFIT at Foodly, the testing and deployment
practices of Foodly are described. Specifically, one might ask how is an application,
like Foodly, comprised of over 500 services with 100 unique deployment events per
day tested before a change is deployed?

First, an application of this size cannot be run on a single developer’s machine for
local testing. This is due to the sheer number of services and database dependencies
required to set up an end-to-end functioning version of the application. Even using
a unique cloud environment for testing is cost-prohibitive in terms of both required
effort and time: inherent to the decentralized nature of service development in a mi-
croservice architecture, each service may end up with slightly different processes for
deployment and configuration. Combined with churn from frequent deployments,
keeping a separate staging environment functioning and reflective of the production
environment to facilitate realistic testing is complex and, at Foodly specifically, is
not done. As a result, Foodly primarily tests changes to services in two ways: in

Takeaways 97

production with sandboxes or locally in isolation.

For production testing with sandboxes, the service code under test is first de-
ployed to a “sandbox” instance running in production, where a developer can attach
a remote debugger to the sandbox’s JVM instance. At this point, the developer can
then issue end-to-end requests from Foodly’s mobile or web application with a test
account to test the service’s features interactively. When issuing RPCs to the service
under test, these requests will traverse production dependencies and have those
RPCs routed to the sandbox instance. From there, any RPCs issued to downstream
dependencies by the service in the sandbox are then routed back to production
instances. To prevent data corruption when writing to data stores, multi-tenancy
routes writes for only those requests to separate data stores or namespaces.

With local, isolated testing of services, automated tests that exercise the service’s
API are used. These tests use stubs for downstream service dependencies, where the
hard-coded responses required for each test are encoded in each stub. It is important
to note that these stubs are in-process gRPC services that return these hard-coded
responses, not stubs that short-circuit the method invocation with the hard-coded
response. Therefore, the test code exercises the RPC framework code that will be
executed in production. For downstream data store dependencies, Docker containers
are used where they are seeded with the required data for each test: again, these
are the same databases that are used in production, just running locally. The only
difference from production code paths is that dependency injection changes the IP
addresses/port numbers used to connect to dependencies, maximizing the coverage
of production code paths. Foodly refers to this style of testing as component testing,
which resembles functional testing of individual services as a single functional
component; the use of a different name was needed to distinguish these tests from the
functional tests that exercise end-to-end application behavior, to minimize confusion
when discussing different testing approaches.

8.5 Takeaways

Conceptually, Foodly is a prime candidate for evaluating SFIT for several reasons:

e Minimized Blast Radius.
First, Foodly wants to ideally avoid any fault injection testing performed in
production, as any injected fault in the production environment may adversely
affect the customer experience when ordering food. Uniquely, SFIT is designed
to identify application resilience bugs by testing in development before the
application code is deployed into production.

98

Industrial Microservices: Foodly

o Automated Test Generation.

Second, Foodly has a large microservice application graph, where individual
services can issue upwards of a hundred RPCs to downstream services to
process a single customer request, prime for fault injection testing where a
single RPC failure can alter application behavior. SFIT avoids the overhead of
application developers manually writing these fault scenarios using mocks
by automatically generating these scenarios based on functional tests of the
microservice application. Similarly, SFIT also ensures that no important fault
injection scenarios are missed during testing, providing that each RPC is
testing for the set of faults it is susceptible to.

Exhaustiveness.

Third, and finally, while Foodly has implemented a large number of appli-
cation resilience mechanisms (e.., circuit breakers, load shedding, retries)
that are all independently tested and provided as libraries, their application
remains vulnerable to failures before these resilience mechanisms activate and
after failures start occurring. This space is where SFIT shines: identifying all
possible faults the application can and will observe.

In the following chapter, SFIT is evaluated on Foodly’s application.

Chapter 9

Evaluating SFIT: In Practice

“They wanna know how many rhymes have I ripped in rep, but researchers
never found all the pieces yet, scientists try to solve the context, philosophers are
wondering what’s next.”

Eric B and Rakim, Don’t Sweat The Technique

As demonstrated in the previous chapter, Foodly provides an exciting and very
relevant industrial microservice application for evaluating Service-level Fault Injection
Testing (SFIT) in practice. In this chapter, the challenges with applying the SFIT
technique, using both the existing research prototype Python FiLisuster and a
new open source re-implementation Java FILIBUSTER [|, are presented and
discussed.

The challenges faced during this evaluation range all across the software engi-
neering spectrum: technical difficulties with the prototype implementation, chal-
lenges faced with integration of the technique into existing processes within the
organization, and the high cost involved in testing services.

Here, these challenges are presented in the context of testing a single service at
Foodly using FILBUSTER, a continuous process performed over two years (2) as an
independent contractor of Foodly.

9.1 Philosophical Challenges

As discussed in Chapter 8, Foodly primarily tests their microservice application
in two ways: manual testing with their mobile application in production using
sandboxes and locally, in development, using component tests.

99

100 Evaluating SFIT: In Practice

Manual testing does not suit SFIT, in that it is too difficult to orchestrate an
efficient, systematic exhaustive testing approach that involves manual, interactive
developer actions: for example, by clicking in the UI of a mobile application to
perform operations that result in requests to the application. Therefore, it was
decided by Foodly to explore the use of SFIT on a service that used component tests,
testing services independently and pair-wise against any possible failures that any
of their direct downstream dependencies might return. Rather obviously, pair-wise
testing of services in a microservice application obviates the need for any test case
reduction strategy such as Encapsulated Service Reduction (ESR) that is based on how
services encapsulate the the failures of their downstream services when responding
to their caller(s).

As the predominant communication framework used by Foodly was Google’s
gRPC framework, which can only return a minimal (16) set of possible error codes,
each RPC issued by a service could be tested using SFIT for all error codes that any
downstream dependencies of that service might return: this includes error codes
that are overloaded for indicating active load shedding or open circuit breakers,
allowing SFIT to cover those failure cases as well. This contrasts with the regular
application of SFIT, where an application is tested entirely by using a reverse topo-
logical sort of the dependency graph to only test upstream services for the errors
that their direct downstream dependencies can produce: in essence, by preferring
raw compute power during testing to address the restrictions of not being able to
test the microservice application wholesale.

Instead, a single service at Foodly was selected, and its existing functional test
suite was tested using SFIT. This resulted in a significant number of test failures, as
expected, as none of these tests contained assertions regarding application behavior
under fault.

One test class was then selected that contained 39 functional tests, which rep-
resented the service’s core functionality and accounted for the majority of that
service’s test coverage. Using the SFIT technique, as faults were injected and the
test failed, the desired application behavior under fault was then encoded into the
test using SFIT’s fault injection predicates. This process was completed when all
failure behavior in the application, for the functionality covered by the test suite,
was captured by the test, and the test suite passed ultimately under SFIT execution.

9.2 Results Overview

The results of applying SFIT to this service at Foodly were somewhat surprising.
First, fewer test failures occurred than expected, due to the use of soft dependencies.

Results Quverview 101

It was only upon manual inspection of the individual tests that should have failed
with fault injection, that the following was discovered:

1. First, many functional tests invoked downstream dependencies that were not
stubbed. This resulted in RPCs to these unstubbed dependencies returning
the error code indicating the RPC method was unimplemented. Not only
is fault injection redundant in these cases, but the functional test does not
capture application behavior when all downstream dependencies are working
correctly.

2. Second, many tests did not assert that invoked downstream dependencies
were invoked (or stated that the dependencies could be invoked any number
of times.) This was independent of whether they were stubbed.

This might indicate one of two things: developers only write tests for the pes-
simistic case to ensure that applications work correctly when all soft dependencies
fail, or the latter, where developers only iterate on tests until they pass. If the latter,
it is safe to assume that if developers do not investigate tests sufficiently to stub all
dependencies when tests are passing, any tests that continue to pass under fault
injection will remain unquestioned, resulting in possible latent bugs in production.

When it came to hard dependencies, it was a cumbersome task to encode the
same failure behavior in every functional test for all combinations of failures. This
is because many of the tests shared a common code path responsible for loading
context information related to the customer with several RPCs, each throwing a
fatal error under RPC failure. This was then exacerbated by tests that performed
setup for the test inside of the test itself, which resulted in fatal faults being injected
during test setup and not test execution, requiring that both the test and test setup
be updated with fault injection predicates, as described by SFIT.

Finally, the process of updating tests to encode the behavior of the application
under fault was generally difficult:

1. It was challenging to understand where an injected fault occurred in a test
execution due to the large number of RPCs executed asynchronously by a
single test (with some identical RPCs being performed multiple times in a
single execution at different points in that execution.)

2. It was challenging to know which SFIT fault injection predicate to use to
encode fault behavior.

3. The process of updating tests with the appropriate SFIT fault injection pred-
icate was cumbersome due to duplication of fault behavior across multiple
tests and when faults were injected in test setup and tear down.

102 Evaluating SFIT: In Practice

In the following sections, both the challenges faced when applying SFIT at Foodly
and the preliminary results of using SFIT at Foodly are presented. These results
are then used to derive a new design of SFIT, Principled Service-level Fault Injection
Testing (p-SFIT) that is the result of a co-evolution of the Service-level Fault Injection
Testing design by the author of this dissertation in collaboration with Foodly.

9.3 Experimental Configuration

To evaluate SFIT, one service at Foodly was selected to be tested with FiLisuster. In
a graph of hundreds of different services, this service has the primary responsibility
of subscribing consumers to the premium plan offered by Foodly. This service
takes dependencies on several different downstream services over gRPC and several
direct dependencies on databases and queues: CockroachDB and Kafka.

This service is automatically tested for each new commit using 3,209 tests, where
1,419 of those 3,209 tests are component tests. There are 936 authored component
tests, which resultin 1,419 tests: 862 are standard tests, whereas 74 are parameterized
tests with a set of provided inputs. These tests have been written and maintained
by 30 different developers.

For our evaluation, only the 862 non-parameterized tests were used to understand
the broad types of failures exhibited by the system under fault injection and then
focus on one specific test file containing 39 specific tests that cover the essential
functionality of the service: subscribing users.

9.3.1 Component Tests

Component tests are implemented in JUnit as standard tests with supporting code
for starting and stopping the service under test, stubbing dependencies, and starting
required database dependencies. Stubbing of RPCs is performed using an in-process
gRPC server where fixtures are installed for an RPC method; therefore, RPCs are
fully executed instead of directly stubbing the method invocations. Stub usage in
component tests is a proxy for (potential) side effects performed by other services.
For example, instead of running a dependency and asserting that the state was
mutated in that service’s database, a stub is used to mimic that service’s behavior.

Test authors mostly use a “given, when, then” style when writing tests. However,
this style is not enforced by any underlying framework code that implements the
separation of these different concerns but is merely a coding style used inside of a
single test method with the different sections delineated by code comments.

In the “given” section, developers install required fixtures and stub downstream
dependencies. These stubbed dependencies are then automatically checked for

Experimental Configuration 103

the correct number of invocations by the stubbing framework only after the test
passes successfully. In the “when” section, developers issue an RPC to one of the
APIs exposed by the service. In the “then” section, developers assert the expected
response from the RPC and any side-effects that should have been performed.
Developers leave this section blank to indicate that an RPC invocation does not
throw an exception without any other explicit assertions.

Based on this structure, component tests fail only in three possible ways:

1. Thrown Exceptions:
when the RPC invocation throws a runtime exception;

2. Assertion Failures:
when the test assertions do not hold; and

3. Stub Invocation Failures:

when stubs are not invoked the number of times specified. While stub invoca-
tion failures do surface as assertion failures at the end of the test execution,
these are distinguished from assertion failures. This is because, in contrast to
assertion failures which can check any arbitrary expression that reduces to a
boolean value, stub invocation failures take a specific form that correspond to
a particular type of test failure. These then and can be automatically checked
against the observed behavior of the system, as in p-SFIT.

9.3.2 Re-implementing FILIBUSTER

The original goal of this evaluation was to adapt the prototype implementation of
SFIT, Python FILIBUSTER, as necessary to perform testing of services at Foodly.

Architecture and Implementation. As discussed, the original Python FiLisuster
prototype is implemented using a language-agnostic design comprised of different
components that operate in concert:

e Several instrumented RPC clients, implemented in Python to support the
FiLiBusTER application corpus but designed to be language-agnostic. These
instrumented RPC clients, implemented in the language of choice used by the
microservice, communicate with the FiLiBusTER server to register RPCs and
inject faults when necessary in a language-agnostic JSON format.

e A CLI for executing tests, implemented in Python. The CLI executes the
developer-authored functional test in any language that exercises the applica-
tion behavior.

104 Evaluating SFIT: In Practice

e A server, implemented in Python. The FiLiBusTER server tracks how many
test executions are necessary and what faults must be injected for each test
execution.

Initially, the thinking was to create instrumented RPC clients for Java the lan-
guage runtime used by Foodly, and reuse the existing components. However, in
the course of iterating on the integration of FiLisuster with Foodly’s code over two
years, the entirety of FILIBUSTER was rewritten in Java.

First, the instrumentation needed for RPC clients was written in Java for Google’s
gRPC library. Next, an external CLI tool was replaced with integration into the JUnit
test framework used by Foodly’s functional tests using a custom test annotation and
factory. This was done for several reasons.

1. As FiLiBusTER needs to run the functional test multiple times, it was necessary
to minimize the cost of starting a new JVM each execution and waiting for
Kotlin test code generation to execute. Even with sharing a gradle daemon, the
build tool used by Foodly, across executions, this startup time was prohibitive,
with a single test execution taking as long as 1 minute.

2. Not restarting the JVM and integrating it into JUnit would avoid the need to
write a custom tool for aggregation of coverage data across different executions,
as this would happen automatically.

3. With JUnit integration, an external FiLiBusTer test harness that lived outside the
application code was no longer required. Similarly, this integration avoided
the need to pause FiLiBUSTER execution to allow an external debugger to be
attached when debugging failures from fault injection were no longer required.

Finally, the FiLiBusTER server that communicated with the instrumented clients
using RPCs was replaced with an in-process Java implementation of that server.
This reduced several challenges we faced with using an external Python process in
Foodly’s continuous integration environment, reduced execution time by avoiding
expensive RPCs between the application and FiLiBustTer server and allowed for more
detailed reporting by removing language-agnostic error reporting with the server
itself.

From there, it was determined that the style of reporting used by Filibuster’s
server, duplicated in the Java re-implementation of the server and presented as log
entries, made debugging and understanding of what went wrong during a fault
injection test too difficult. Therefore, an Intelli] plugin was designed that allowed
application developers to visualize the results recorded by the FiLiBUSTER server to
make debugging significantly more accessible. This included, but was not limited to,

Experimental Configuration 105

the test executions generated by FiLiBusTER, the faults that were injected, the request
and responses for all issued RPCs, and the test failures that occurred when faults
were injected.

Nondeterminism: Data and Scheduling. Most of the functional tests that Foodly
writes are free from observable nondeterminism. However, these tests contain
significant nondeterminism in their implementation in both data and the underlying
scheduling of threads. This complicates the SFIT approach, as the systematic,
exhaustive exploration performed by SFIT assumes that RPC invocations can be
uniquely and deterministically identified using their request and call site, as well
as that the responses to those RPC invocations across different test executions are
deterministic. In practice, all of these assumptions were violated.

As discussed, SFIT uses an algorithm called DEI to identify RPC invocations
uniquely and deterministically: this enables SFIT to know when the fault space has
been fully explored. DEI uses the invoked RPC service, RPC method, call site, and
invocation count to determine the precise location of an RPC in the application code
regardless of conditional control flow, looping constructs, and function abstraction.
This is encoded as a unique and deterministic identifier for that stable RPC across
multiple executions of the same test. When concurrency primitives are used, like
threads, DEI also encodes the RPC’s arguments, called the invocation payload,
into this identifier to avoid the use of a specialized research version of the JVM in
testing that can control thread scheduling. This is impractical for large microservice
applications that use different language runtime versions and support libraries
across other services.

At Foodly, component tests are nondeterministic in both data and scheduling.
Regarding data, tests generate random user identifiers often derived from auto-
incrementing fields in databases. These identifiers are included in many RPCs
executed by the application, and therefore, RPC arguments and responses are not
deterministic across executions. Regarding scheduling, every RPC executed uses a
Kotlin coroutine, where a single RPC can begin running on one thread and complete
execution on a different thread. Furthering the complexity, Kotlin’s coroutines are
limited in that stack traces, used to determine the RPCs call site, are not available
under coroutine resumption in application code but only available asynchronously
through a reassembly process performed by, and available only in, the debugger,
when attached. These complicate the generation of stable identifiers for each RPC
necessary for exhaustive search by SFIT.

To work around this deficiency, a modified version of DEI was created that is
“best-effort.” This modified version encodes as much information as is available
at the time of the RPC, omitting any information known to be nondeterministic

106 Evaluating SFIT: In Practice

ban annotation provided to the test itself. In practice, almost all tests contain data
nondeterminism in RPCs. However, most of the code tested in this evaluation
executes downstream RPCs in sequence, regardless of coroutine usage. When RPCs
occur concurrently, they almost always differ by RPC service or method.

9.3.3 Enabling FILIBUSTER

To enable Filibuster for the subscription service, FiLiBusTeEr was included as a test
dependency of the application. This ensured that any code introduced by FiLiBusTER
did not impact any of the production code or alter any production dependencies of
the subscription service.

A minor refactoring was then performed of the subscription service to allow the
FrLisuster GRPC interceptor to be added (used for tracking RPC during the reference
execution and injecting fault during the generated fault injection executions) only
at runtime when running as a test using the dependency injection library used by
Foodly: Google’s Guice.

This interceptor was specifically installed between the application code and the
underlying RPC framework used by Foodly: Foodly’s Hermes library. This was
done to ensure faults could be injected without being adversely affected by Hermes
built-in resilience mechanisms: specifically, circuit breaking and load shedding
under failure as well as automatic retry on certain RPC failures. Therefore, this
allowed FiLiBusTER to inject faults without those RPCs being automatically retried
under failure or risk repeated fault injection interfering with FiLiBusTer’s exhaustive
exploration algorithm: the goal was to find application resilience issues and not
test the already well-tested built-in resilience mechanisms of the underlying RPC
framework.

9.3.4 Configuring FILIBUSTER

FiLiBusTer was configured using the following configuration options. First, to ensure
termination of the search algorithm within a reasonable time:

e Data Nondeterminism.
FiLiBusteErR was configured to adapt the exhaustive search algorithm to deal
with the data nondeterminism that is present in component tests.

As presented, FILIBUSTER uses an algorithm that encodes the RPC’s arguments
into a unique RPC identifier used during an exhaustive search. This allows
FiLisusTeR to search the fault space when scheduling nondeterminism properly
is present without control of the underlying language VM scheduler.

Experimental Configuration 107

Unfortunately, this algorithm is incompatible with tests containing data non-
determinism, as these arguments will vary from execution to execution as all
of the tests written by Foodly have data nondeterminism. For example, each
test generates a unique user identifier for each re-execution of the same test.
Therefore, each invocation of the same test will not execute the same RPCs,
and the exhaustive search algorithm has to be adapted accordingly to correlate
RPCs between different executions as the same RPC for exhaustive search to
terminate.

o Maximum Fault Injections (Upper Bound.)

FiLiBusTER was configured to generate, at maximum, 100 fault injection tests
per component test. Because of restrictions deep in the design of JUnit, fault
injection tests that were not necessary were still generated but were effectively
a no-op.

Specifically, if a reference execution of a given test executed 30 RPCs, Filibuster
would generate 30 additional tests (i.e., 1 reference execution + 30 fault execu-
tions) to cover all single fault, no permutation scenarios required, with the
remaining 70 executions resulting in no-ops. If a reference execution of a test
executed 101 RPCs, FiLiBuster would generate 100 additional tests, skipping
the final required fault injection (i.e., 1 reference + 100 faults, one non-executed
scenario.)

No-op executions incurred an execution penalty of 0.15ms per execution. In
the worst case, a 15-second penalty per test that executed no RPCs. This was
done to place an upper bound on execution time under the assumption that
no test would run more than 100 RPCs to downstream services.

Second, to reduce the number of Filibuster-generated tests per component test,
two optimizations were done:

o Fault Permutations.
FiLiBusTErR Was configured to not inject multiple simultaneous faults and only
to inject a single fault in each generated test.

This was done to keep the execution time reasonable, given that each test
issues many RPCs.

This optimization was performed by examination of a subset of tests that
determined that RPC execution was performed in a sequential workflow with
minimal concurrency.

o Exhaustiveness.
Foregoing static analysis, FiLiBuster was configured only to inject a single

108

Evaluating SFIT: In Practice

fault: the gRPC StatusRuntimeException exception parameterized by code
UNAVAILABLE, which is most often used to indicate that the remote service is
unreachable or returning a connection error.

Again, this was done to keep the execution time reasonable for this naive
evaluation given that there was a significant amount of tests to execute using
FiLiBusTER and that each test issues a large number of RPCs.

This optimization was performed by examining a subset of tests that deter-
mined that RPC execution rarely contained error handling code conditional
on the error code that was returned.

Third, an application-specific optimization was done:

o Cache Assumption.

Using a cache for RPC invocations and responses for a given RPC was assumed.
At the time of writing, the service tested was converting from a Redis-based
cache to a multi-tier cache in the application. Both caches were turned off by
default when executing the test suite.

Therefore, to avoid encoding cache semantics into the test harness and to avoid
having to restart both Redis and the JVM in between each test invocation, the
FiLiBusteR search algorithm was configured to prevent fault injections on RPCs
for the same service, method, and arguments if it has already succeeded in
the test execution previously, simulating the behavior of this cache.

This under-approximation reduces the completeness of the FiLisusTer algo-
rithm by skipping scenarios of cache failure mid-request.

It is noted that all optimizations were validated against the subscription process,

which accounts for the majority of code coverage of this service. While this is not
definitive, it accounts for the programming style widely used in this repository and
across the Foodly microservice application.

9.4 Socio-Technical Challenges

In terms of socio-technical challenges, it was found that any modifications made to
application code, build processes, or test code to support SFIT needed to be justified
for those changes to be integrated into the code base. This involved writing technical
documentation, minimizing the impact on existing processes, and producing visual
results for understanding the approach’s benefits.

Socio-Technical Challenges 109

9.4.1 Education and Documentation

When it came to integration into the service that was tested with SFIT at Foodly,
the author was immediately asked several questions by different developers that
all took the general form of “What is this, and how will it impact me?” In short,
developers wanted to know what this tool was doing, how it would impact them,
and how it would impact their daily workflow. This had to be addressed in several
steps.

As modifications were being made directly to test code that application devel-
opers of the service were working on as part of their daily work, documentation
had to be written on how actually to work with the SFIT tool, what errors they
might see, what those errors mean, and what to do about debugging those errors.
This involved extensive Javadoc work within the code of the FiLisusTer Java imple-
mentation itself and using Foodly’s external documentation tool for writing several
interactive tutorials on adapting a tool for use with FiLiBuster and debugging the
resulting failures. In addition, how the FiLisuster integration was performed for
that service, how it integrated into the IDE, and how it integrated into the build and
deployment processes used for feature development all had to be documented.

During this process, several iterations of the FiLisuster API were made based on
feedback from the team that worked on the service we were testing. From there, a
“Request for Comments” (RFC) document was produced that was distributed to the
broader team with what we assumed would be the finalized API, which resulted
in several additional iterations of the API. As part of this, several detailed discus-
sions were had with team members to justify why this approach was better than
the alternative approaches for fault injection testing and why seemingly “cleaner”
approaches would not scale within Foodly.

9.4.2 Development Processes

Regarding the local development experience, several different IDE integrations were
built based on developer feedback.

It was discovered that developers wanted a mostly opt-in experience, where they
did not run these tests automatically when running the test suite of their application.
In short, they did not want any process changes made that may impact their local
development experience. When the author inadvertently made these changes early
during our initial integration, they were immediately asked to revert them. A
design was ultimately settled where a single test could be run with fault injection
optionally in Intelli] but defaulted to running that test without fault injection. It is
believed that this reflects the methodology of this style of test development: iterate
quickly to get the test passing and then run with SFIT to identify resilience bugs. In

110 Evaluating SFIT: In Practice

practice, there is no evidence to indicate if this integration style will ever result in a
developer running the tests with SFIT, but instead defer to resilience bugs identified
in continuous integration.

As observed when integrating SFIT with continuous integration, developers are
hesitant to adopt any process that will increase a perceived “slow” build time for
their application in continuous integration. Therefore, any proposal where a new
technique would increase code coverage, for example, at the cost of 16 additional
tests for every single RPC executed by a given test of several thousands of tests,
was met with pushback. Therefore, it was necessary to develop a strategy where
SFIT could still be used but without impacting the daily workflow of developers.
The strategy ultimately implemented involved performing nightly SFIT runs on the
most recent commit to the ‘main” branch of the repository and reporting failures
using a Slack notification on failure. While this appeased the developers of the
service where this testing was being performed by avoiding an expensive SFIT run
for each commit during feature development, it was found that both caused errors
to be ignored by most developers and made correlation between SFIT failures with
the change set that introduced the regression difficult. At this point, it remains
unclear what the correct balance is here, as traditional approaches for regression
identification (e.g., git bisect) can be prohibitively expensive due to the overhead
involved in SFIT-style testing.

It was also discovered that integration with code coverage was helpful in con-
vincing developers of the value of SFIT testing. For example, it is possible to visually
show developers the increase in code coverage provided by SFIT through fault
injection. To do this, statistics were reported using Java CodeCov using a specific
tag that could be used to differentiate the non-SFIT test suite execution against the
SFIT test execution visually and see the increase in coverage.

9.5 Results

The application of Java FiLiBusTER resulted in many failing tests. This was expected
as none of the existing tests were adapted to encode the application’s behavior under
failure.

Of the 862 component tests, Java FiLisuster identified 546 fault injection scenarios
that resulted in test failures, with two of those failures also appearing in the reference
execution but not in any fault injection execution, indicating that these tests were
flaky. These failures were consistent with our analysis of how component tests can
fail: thrown exceptions for the failure of hard dependencies assertion failures, and stub
invocation failures for the failure of soft dependencies.

Results 111

e 367 of 546 (67.22%) failures were because the test expected a response, but
a gRPC exception was thrown. This indicates a hard dependency failure as an
exception was thrown, indicating that the request could not be processed.

Therefore, p-SFIT should provide a mechanism for directly identify-
ing RPCs that are hard dependencies and the thrown exceptions that
their failure produces.

o In 85 of the 367 (23.16%), the same exception was thrown on hard dependency
failure. However, it was parameterized with four different status codes de-
pending on the failed dependency. Similarly, in 304 of the 367 (82.83%), the
same exception was thrown on hard dependency failure. However, it was
parameterized with the same status code with different exception messages,
each to indicate which hard dependency failed. This indicates that different
hard dependency failures may arbitrarily return the same or different status
codes.

Therefore, p-SFIT should require that developers indicate the asser-
tions that should hold under a thrown exception by status code to ensure
that status codes have consistent meaning and can be treated uniformly
by the upstream, calling service.

In contrast, p-SFIT should not allow the developer to encode behavior based
on the contents of the exception message, as that is meant only for debugging.

e 110 of the 546 (20.15%) failures were because the test failed an assertion after
returning a successful response to the tested RPC method. This may indicates
that a soft dependency failed and the service gracefully degraded. However,
as assertions may be written arbitrarily, it may also indicate the failure of a
hard dependency. A random sampling of the 110 failures revealed that many
of these errors were directly related to graceful degradation: for example, by
assuming a customer’s location is the USA when it cannot be determined due
to RPC failure or by not displaying five advertisements on a landing page if
only 4 of the RPCs that load the advertisements succeed. This indicates that
both hard and soft dependency failures can be identified by assertion failures.

112 Evaluating SFIT: In Practice

Therefore, p-SFIT should require that on both hard and soft depen-
dency failure, developers explicitly indicate the assertions that should
hold. This ensures that when soft dependencies fail and fallbacks are
used, they are captured in tests; when hard dependencies fail and throw
exceptions, the system remains consistent based on the thrown exception

type.

e 61 of the 546 (11.17%) failures were because the test received a successful re-
sponse from the tested RPC method, then passed all assertions, but failed when
RPC stubs were verified for the correct number of invocations. This indicates
a soft dependency failure only detectable through missing stub invocations.

Therefore, p-SFIT should require that developers indicate precisely
how many times every stubbed RPC should be invoked.

A single file that exercised the core functionality of the service (39 tests) was
then selected, and the tests were subsequently updated to contain the application’s
behavior under fault using SFIT’s fault injection predicates.

p-SFIT should provide recommendations to the developer on how to update
their tests to contain the application’s behavior under fault.

In every test, it was necessary to encode the failure of two hard dependencies in
shared code paths for thrown exceptions: if the RPC failed to look up the customer
or their location. Then, for soft dependencies, the invocation count had to be condi-
tionalized based on the fault injections on either the stubbed RPC or any RPC failure
that would prevent the stubbed RPC from being invoked due to control flow that
was conditional on previous RPCs succeeding.

Out of the 39 tests that were encoded with the application’s behavior under fault,
the following was identified:

e 33 of the 39 tests (84.62%) had to be adapted for the exception thrown when
the location lookup failed. 34 of 39 tests (87.18%) had to be adapted for the
exception thrown when the customer lookup failed. This indicates that hard
dependencies are often used in shared code paths executed by multiple tests.

Results 113

Therefore, p-SFIT should provide a method for sharing the encoded
failure behavior of the application easily across different tests.

o As expected, 7 of 39 tests (17.95%) had to be modified in the execution block
to account for downstream dependencies where faults were injected. Still,
they had no impact on test outcomes other than asserting they were invoked.
However, 9 of the 39 tests (23.08%) had to be adapted to verify that, on a
thrown exception, other downstream dependencies were not invoked by modi-
fication of their stub invocations using conditional code on fault injection. This
indicates that hard dependency failures that result in thrown exceptions prevent
the invocation of subsequent, stubbed RPCs.

Therefore, p-SFIT should require that on thrown exception, develop-
ers re-assert how many times stubs should be invoked.

This ensures that side-effects performed by RPCs are not completed when an
exception is thrown, potentially leaving the system in an inconsistent state.

Finally, out of the 39 tests encoded with the application’s behavior under failure,
not a single test stubbed all of the soft dependencies it invoked. Instead, developers
duplicated the same test repeatedly only to, in each derivative test, only stub the
RPC and assert that the stub was invoked.

Therefore, p-SFIT should require that happy path functional tests stub all
invoked RPCs and require those stubs to return successful responses.

(Potential) Bugs. With SFIT, it was clear that soft dependency failure can be the
root cause of latent application bugs. Of the 39 tests, 3 of these tests (7.69%) revealed
the presence of 3 unique application bugs. Two of these bugs involved the failure
of a soft dependency influencing whether or not a subsequent RPC was executed.
The third bug initially appeared as a duplicate of the second bug. However, another
independent bug was then discovered in the existing test suite when fixing the
second bug, indicating that SFIT can help surface interesting, unexplored failure
scenarios.

With the first failing test case, a failure of RPC A inhibits the invocation of
some RPC B. In this specific case, RPC B’s failure is logged and reported. However,
control flow prohibits the invocation of RPC B when RPC A fails. When RPC A

114 Evaluating SFIT: In Practice

fails, its failure is swallowed, and nothing is logged. In this application, RPC A
can fail by returning both a response indicating that a record is not present and a
communication failure. When investigating the possible bug, it was determined
that an offline process is used to compensate for the failure of both RPC through a
manual reconciliation process using Foodly’s data warehouse.

With both the second and the third failing test cases, the same shape appeared in
the same code path: some RPC X fails and inhibits the invocation of some (different)
RPCY on failure. However, in the case of the third failing test, the service developers
had written a test explicitly for the specific negative case of RPCY failing. Therefore,
during the investigation, it was determined that the X-failure-inhibits-Y bug should
be repaired like the strategy employed in the test case that specifically modeled
the failure of Y. What was identified was surprising: not only did the test case that
developers had written to test the failure of RPC Y mishandle the failure explicitly,
but it was an active bug that had adversely affected customers as recently as five
days before the bug investigation. SFIT had not only identified a potential failure
case, but had alerted us to how the existing test suite was written incorrectly.

In all of the identified cases, the root cause was clear: developers had explicitly
mapped the failed RPC into either a null or default response of the appropriate
type. This variable was passed throughout the application, causing the failure to
change the control flow and bypass subsequent RPC invocations.

Therefore, p-SFIT should require that test code indicate how many times
downstream dependencies, which do not affect the RPC’s response (as in
both cases a successful response was returned) should be invoked.

9.6 Takeaways

As demonstrated in this section, SFIT, as designed, suffers from several interest-
ing deficiencies that would have remained undiscovered without evaluation in an
industrial context on a real-world industrial microservice application.

First, and most notably, industrial microservice applications are much too large
and complicated to be tested wholesale. Therefore, any fault injection approach
must test services in isolation, exhaustively for the faults they are susceptible to
based on their downstream dependencies.

Second, without enforcing that application developers address each injected
fault, it is much too easy for developers to write tests of services that ignore injected
faults that do not result in test failures. For example, where an application developer
fails to write an assertion on behavior conditional on whether a fault is injected.

Takeaways 115

Third, the overhead in determining how to encode failure behavior into ap-
plication test code is high. Therefore, it is necessary to provide a mechanism for
developers to understand where a fault is injected quickly, what the impact of the
injected fault was, and how to, if desired, encode that behavior into the tests of their

microservice application.

Chapter 10

Microservices: Dependency Type
Evolution

“We all exist in our own personal reality of craziness.”

Alejandro Jodorowsky

Armed with the results from the industrial evaluation at Foodly, presented in
Chapter 9, the context can be switched back to research to address the deficiencies
in the existing Service-level Fault Injection Testing (SFIT) approach.

More specifically, with the knowledge of how microservices are tested in in-
dustrial settings, the challenges with adapting industrial microservice application
tests for resilience, and how both hard and soft dependencies are employed, and
tested in industrial microservice applications, a new process for testing microservice
applications can be designed.

However, first, it is necessary to design a new application for the microservice
application corpus that reflects the ground truth of industrial microservice applica-
tions. In this chapter, application is presented using strictly hard dependencies: this
application is inspired by application design and behavior observed at Foodly. Then
this application is evolved, in the same manner as done at Foodly, to change hard
dependencies to soft dependencies with the goal of improving application resilience.
This evolution introduces latent application bugs, prime for detection with SFIT.

10.1 Application Structure

Consider the microservice application, depicted in Figure 10.1 comprised 6 services,
each with its own associated data store:

117

118 Microservices: Dependency Type Evolution

Client Client
B #
AP| Gateway AP| Gateway

Interceptor -+
Filibuster
¥ vy 7 > Server <
A

Order Service

Order Service

INterceptor preeesessseeeeeeeenees :

A4 y v ‘ | ;
Pricing -
User Service Cart Service Adjustment If’ncmg
Service User Service Cart Service Adjustment
Service :
Interceptor ~ preeeee* :
. 4
Shipping o
Service Shipping
Service
(a) without FiLiBusTer (b) with FrLiBusTER

Figure 10.1: Purchase Application Structure with FiLiusTer Instrumentation

API Gateway:
For handling consumer requests;

Order:
For handling purchases;

e User:
Mapping active sessions to users;

o Cart:
Mapping sessions to shopping carts;

Pricing Adjustment:
Determining if a cart is eligible for a pricing adjustment, in terms of additional
fees or discounts; and

Shipping:
For shipping.

Application Structure 119

Service Database Database Databaq Database
Process - o \7/ -
Filibuster b T A T
Pricing
Adjustment >
Service
/ ") Response
N

— A A A

oU OOO

RPC Process Shipping

Cart Service .
Service

User Service
Decision

------ Instrumentation

— RPC

RPC RPC RPC - N 4 — N
getUser getCart getAd]ustmem |) | /‘
Yes Yes
Fail? Fail? Soft Dep? N Fail? > Fail?
API| Gateway >
T N No
. \ / RPC Complete
Gt LS /‘ ‘\\ S ‘ ’{ updateCart Purchase

Order Service

Figure 10.2: Purchase Application Workflow with Graceful Degradation

While this example reflects behavior at Foodly, the example is fictional: it is con-
siderably simplified in this paper for both presentation and confidentiality. Specifi-
cally, services have been renamed, and additional services, RPCs, and business logic
that is unnecessary for exploring RPC failure’s impact on microservice resilience
have been removed.

When the order service receives an RPC from the API gateway, it first issues an
RPC to the user service to retrieve the user’s information. Once that is complete, the
order service then issues an RPC to the cart service to retrieve the user’s shopping
cart. Then, the cart and user information is sent in an RPC to the pricing adjustment
service from the order service. If and only if an adjustment is returned, a subsequent
RPC is issued to the cart service to adjust the pricing for that shopping cart. When
all of that is complete, the purchase is confirmed through additional RPCs and
database writes that have been omitted. This workflow is depicted in Figure 10.2.

120 Microservices: Dependency Type Evolution

10.2 Hard Dependencies

In the first iteration of the purchase application, all of the services that RPCs are
made to are hard dependencies: in that if any of the RPCs fail, an error is returned to
the API gateway which is propagated back to the customer and asks them to try
their request again.

Let us explore what happens in a bad deployment of the pricing adjustment
service. For example, consider the case where the pricing adjustment service is
deployed with a bug that causes null pointer exceptions whenever an RPC is received
to adjust the user’s cart. This bug may not be caught in testing because it is only
triggered by a mismatched dependency in production.

When this code is deployed to production, it is incrementally rolled out: up-
grading a single service instance at a time, in bulkheads [] that partition
traffic to isolate the effects of a bad deployment to a single partition. As each par-
tition is upgraded, it passes standard health checks and probes (e.g., readiness,
liveness) [] indicating that the service can respond to requests. However,
these probes may only be shallow checks that verify the service is answering re-
quests but do not exercise each and every code path. As soon as the code is live and
begins receiving user traffic, developers will be alerted to failures as Service-Level
Indicators (SLIs) and Service-Level Objectives (SLOs) [| will begin to degrade,
indicating both increased error rates to the pricing adjustment service, the order
service, and the API gateway.

At this point, the deployment will be aborted, and the deployment version will
be rolled back. But, before this can occur, circuit breakers |] on the order
service will fire and reconfigure the service to avoid calling the failing dependency.
This allows developers to provide special-case error messages to upstream callers
and removes load on the failing service, as the root cause may be unclear. Similarly,
had this been related to a feature rollout, this same process would occur when
enabling the feature using a feature flag. In this case, the resilience mechanisms
work as expected: bugs are mitigated quickly with minimal impact on customers.
Requests were aborted with errors, and clean-up of the incorrect state is minimal.

10.3 Soft Dependencies

With many industrial microservice applications issuing over 100 RPCs to handle a
single customer request, developers of these applications tend to classify services
into tiers |]:

o Tierl,
Representing the critical services;

Latent Resilience Bugs 121

o Tier 2,
Representing essential business functions, and

o Tier 3+,
Representing services that, if unavailable, have a hard-to-notice impact.

For example, in our purchase application, one might classify the user and cart
services as Tier 1: the application cannot complete a customer’s purchase without
these services. However, one might classify the pricing adjustment service and its
dependencies as Tier 2: important, but its failure should not prevent a user from
making a purchase, as the purchase’s payment amount could always be adjusted
later. Therefore, one can think of the pricing adjustment service as a soft dependency
of the order service. Specifically, should it fail, the request should proceed without
the failure impacting the purchase.

Soft dependencies may prevent the mitigation of bad deployments by gracefully
degrading features or using reasonable default values upon failure. To demonstrate,
consider the case where the pricing adjustment service is deployed with a bug that
causes null pointer exceptions whenever the pricing adjustment service receives an
RPC, and only when the user is eligible for a pricing adjustment. When the null pointer
exceptions do occur, the customer can still make a purchase, however will not receive
a pricing adjustment.

As expected, soft dependency failures may be more difficult to identify after
deployment for several reasons. First, the failure does not cause the SLIs of the
order service and API gateway to change, as failures are swallowed, and customer
requests are processed successfully, albeit without an adjusted price. Second, while
the SLIs for the pricing adjustment service will be affected, given that only a subset
of users will be eligible for a pricing adjustment, this failure may go unnoticed,
unless someone is actively observing these metrics during deployment. Still, circuit
breakers will activate with a sufficient error rate, and once the SLI is investigated as
part of the deployment, the bad deployment will be rolled back. Cleanup is a bit
more complex, as some customers will have placed purchases and paid the incorrect
price. However, if a metric was logged for each error, manual remediation can be
performed for each logged error. Every failed RPC reflected a single customer who
should have received an adjustment.

10.4 Latent Resilience Bugs

In contrast to active application bugs, latent resilience bugs —bugs that are introduced
in a bad deployment but that are later activated by the failure of a dependency — can
be more challenging to mitigate as they will not be detected during deployment but

122 Microservices: Dependency Type Evolution

at some later time. When combined with soft dependencies, they can be extremely
difficult to detect in production if failures are either infrequent or otherwise hidden
by a service’s error budget.

For example, consider the case where the pricing adjustment service contains a
latent bug involving a downstream dependency. With this latent bug, a timeout is
misconfigured with respect to the order service’s timeout, and therefore when the
pricing adjustment service’s dependency slows down, a timeout error is propagated
back to the order service. This could happen for any number of reasons related to the
service or underlying infrastructure. Given that the pricing adjustment service is not
a hard dependency, the customer’s purchase is completed without the proper pricing
adjustment and must be remediated. However, identifying which purchases require
remediation may be difficult, as the remediation process must now discriminate
between legitimate and spurious failures.

10.5 Takeaways

As described in the background and related work material, one of the limiting
factors in research on microservice applications is access to industrial applications.

In fact, as demonstrated in our evaluation of SFIT in practice, this resulted in
several mismatches between the SFIT design and how industrial applications are
tested, resulting in difficulties in applying the approach. Even when those difficulties
were overcome, challenges were still faced related to gaps in the SFIT approach:
SFIT assumes that tests will fail when injecting faults and non-failing tests may
result in a lack of investigation of the impact of faults.

To address this, the observations from this industrial evaluation are used in
the co-evolution of the SFIT approach, with Foodly, to derive a new synthetic
example that can be used to further microservice application resilience testing. This
resulted in the design of a new approach, Principled Service-level Fault Injection Testing,
presented in the next chapter.

Chapter 11

Principled Service-level Fault Injection
Testing

“Everybody’s a mad scientist, and life is their lab. We're all trying to experiment
to find a way to live, to solve problems, to fend off madness and chaos.”

David Cronenberg

Principled Service-level Fault Injection Testing (p-SFIT) is a software development
process that extends the SFIT approach for microservice applications that are de-
signed to degrade gracefully under failure. It provides a structured method for
writing structured happy path functional tests — test cases that properly capture appli-
cation behavior when the application contains no faults — and then updating those
tests to also account for the application’s behavior under failure — once fault injection is
applied.

It does this with a development IDE plugin that visualizes fault injection scenar-
ios and provides recommendations on accounting for failures in test code. p-SFIT
forces developers to make explicit their application’s behavior under fault and allevi-
ates the burden of having them think about how their application may be impacted
by RPC failure by auto-generating the failure scenarios.

This innovation was necessary, as SFIT leaves several questions unanswered and
in the hands of the developer to solve. p-SFIT answers these questions by proposing a
testing process that extends SFIT. This process was designed alongside an industrial
microservice application to remain grounded in how these applications behave and
are tested.

Regarding writing structured happy path functional tests, two questions remain
unanswered by SFIT.

123

124 Principled Service-level Fault Injection Testing

1. How can one write these happy path functional tests in a way where, when
applying fault injection, they avoid executing uninteresting fault scenarios: for
example, where they inject failures in setup, assertion, or tear down code?

2. How does one know if these happy path functional tests, which they will use
as the basis for the SFIT process, are written in enough detail to capture latent
bugs activated by the failure of a downstream dependency?

Similarly, when it comes to updating those tests to account for the application’s behavior
under failure, three questions remain unanswered by SFIT.

3. With soft dependencies that may not provoke a failure with fault injection,
how does one ensure that a developer has specified and considered its failure
behavior?

4. How does one make updating existing functional tests to capture failure
behavior easier?

5. How does one avoid requiring developers to encode every possible combina-
tion of failures in their test code?

To answer (1), the possibility of generating fault injection scenarios that are
not interesting should be minimized when testing a service for its behavior under
fault. This avoids tests where faults are injected in downstream RPCs executed
as part of the setup, tear-down, or assertion code. For example, the test code that
makes a purchase and the assertion code that verifies a purchase invoke the same
downstream dependency to look up the user. In this case, only injecting faults on
the lookup for the purchase.

To answer (2), tests should also start from a known good place. Tests should
not invoke downstream dependencies that are either not stubbed or not started and
return an error. Instead, tests should either start or stub all downstream dependen-
cies reflecting the “happy path” case where all dependencies return non-failure
responses. Fault injection should then be used to generate the required variations
of the test where faults are injected for those RPCs.

Similarly, if downstream dependencies are stubbed, a precise expected invoca-
tion count for that stub should be supplied unless that dependency is specifically
indicated as a read-only dependency without side-effects. For example, a method to
retrieve the user may be invoked an arbitrary number of times if it only reads from a
database and returns the response. In contrast, a dependency that performs a write
operation on a database should have its necessary number of invocations specified
precisely. This is necessary to prevent both under-invocation and over-invocation in
the case of non-idempotent endpoints that do not de-duplicate requests.

Owerview of p-SFIT Approach 125

To answer (3), developers should be forced to consider every injected fault and
encode the behavior of the system when those faults are injected. This should be
done in a lightweight manner, indicating that the fault has no impact, results in
different assertions holding, or results in the upstream caller receiving an exception.
This is necessary because existing assertions are often too weak or permissive of
faults. In short, without explicitly encoding that a fault has no impact, the lack of a
failure may indicate a false negative.

To answer (4), the test interface should allow for reuse across multiple tests that
test either the same API with different arguments or system configurations (i.e.,
feature flags.) This is necessary when the APIs share common code paths, where
re-encoding of failure behavior would be redundant. Further, to ease the process of
encoding this failure behavior, developers should be provided with “hints” on how
to encode the failure. For example, suppose the failure of a hard dependency returns
an exception. In that case, the developer should be provided with a recommendation
or code snippet that they can easily use to convert their test to encode that behavior
under fault.

To answer (5), compositional reasoning within a service should be used wherever
possible to avoid redundant encoding of failure behavior under combinations of
faults in the same test execution. For example, suppose the developer indicates, in
isolation, that a failure of RPC 1 has no impact on the test outcome and that a failure
of RPC 2 causes the system to throw an exception. In that case, the tool should
attempt to check that the simultaneous failure of RPC 1 and 2 causes the system
to throw an exception, without requiring that the developer explicitly encode this.
Furthermore, the developer should only be required to encode behavior where the
application behavior is ambiguous. For example, when the failure of RPC 1 and
RPC 2 each have been independently specified with two different sets of assertions.

11.1 Overview of p-SFIT Approach

To realize these requirements, a testing process that integrates with the existing
testing procedure of SFIT is presented. The testing process is composed of both
developer actions (in italics), actions performed by p-SFIT (in bold), and actions
performed by SFIT (in normal).

When developers are writing structured happy paths functional tests, the process is
as follows:

1. Execute the test without fault injection.
Once the test is passing;:

a) Fail the test if any invoked dependencies return a non-success response.

126 Principled Service-level Fault Injection Testing

i. Update test to stub RPC with response.
ii. Go to Step 1.

b) Fail the test if any stubbed dependencies do not explicitly indicate a
precise invocation count.

i. Update stub to indicate expected invocation count. p-SFIT will not accept
use of imprecise counts: “any # of times” or “at least once.”

ii. Go to Step 1.

When developers are updating their happy path functional test to account for the
application’s behavior under fault, the process is as follows:

2. Execute fault injection scenario from SFIT.
Did the developer encode application behavior under fault for the injected
faults?

a) If not, fail the test for unspecified behavior and provide recommenda-
tions on updating the test to encode the application’s behavior under
fault based on the observed behavior.

i. Update test to encode the application’s behavior under fault. Figure 6.1
provides an example of this in SFIT.

ii. Go to Step 1.

b) If so, check that application behavior matches the developer-specified
behavior.
If false, ask the developer to investigate a possible application bug
and provide recommendations on encoding the observed application
behavior under fault into the test.

i. If a bug, resolve.
ii. Ifnot bug, encode application’s behavior under fault using recommendations.
iii. Go to 1.

3. If more fault injection scenarios remain, go to 2 only if the current test execu-
tion passed based on the developer specifications of application behavior
under fault.

p-SHIT differs from SFIT in that, rather than running all possible fault injection
scenarios immediately and showing all fault injection executions and how they
failed, p-SFIT only executes fault injection scenarios until it encounters the first
test failure. The developer is then prompted to update the test to account for the
application’s failure behavior before proceeding, refining that behavior over time

Components of p-SFIT 127

as new fault injection scenarios are introduced and avoiding the scenario where
developers encode behavior that may be derived through compositional reasoning
for example, if they were to start with the last fault injection scenario, which contains
the most significant number of simultaneous faults.

The p-SFIT testing process, just like SFIT, always re-executes both the happy path
execution and all fault scenario executions each time it is run. This is done because
the developer may have inadvertently made a change to either the code (to resolve
an identified bug) or the test (during the process of updating the test to capture
the application’s behavior under fault) that causes either a previously passing fault
scenario (or the happy path execution) to fail.

11.2 Components of p-SFIT

Our design comprises four major components to meet these requirements and
realize our testing procedure.

1. a test interface that improves on both the writing of happy path functional tests
and updating those tests to account for the application’s behavior under fault:

a) avoiding the generation of “non-interesting” failure cases resulting from
RPCs executed in test setup, assertion, and tear-down code;

b) maximizing reuse of failure specifications; and

c) warns on the under-encoding of dependency failure.

2. an API for updating happy path functional tests to account for application behavior
under fault that supports precise failure specification for all possible failure
scenarios of both hard and soft dependencies. This API is then mechanically
checked by p-SFIT to ensure that all injected (single) faults have a correspond-
ing covering specification;

3. an algorithm for compositional reasoning within a service. This algorithm allows
for the encoding of failure specification under single faults and the automatic
checking of failure scenarios under simultaneous faults when the desired
behavior is unambiguous and

4. an Intelli] IDE plugin that visually depicts:

a) test executions and the RPCs that they execute to downstream dependen-
cies;

128 Principled Service-level Fault Injection Testing

b) the specific RPCs where SFIT fault injections have been performed in
each execution; and

c) code snippets and recommendations with integrated JavaDoc on how to
encode failure behavior for a test failure, based on the precise injected
fault, for use when that behavior is desired under fault.

These four components are described in the following sections.

Transitive Service Encapsulation Testing. However, before describing these four
different components, it is important to note that a complimentary algorithm to
ESR was designed during the development of p-SFIT that is compatible with the
component testing style.

In this algorithm, the results from comprehensively testing a service for failures
to its downstream services would produce a fault injection configuration that was
based on the observed responses returned from the service-under-test (say Service
B). This configuration could then be used for testing a different service that took the
tested service as a dependency, in order to avoid exhaustive testing of that service
(say Service A, which calls Service B) directly.

This obviates the need for a static analysis, however only under the assumption
that testing all terminal nodes in a graph exhaustively yield all possible error re-
sponses that those services can return. Thus, any upstream service must only be
tested for those faults (plus a standard set of timeout and networking failures) using
a depth-first search of the microservice graph, recursively as the graph is traversed.
In essence, this leverages the service encapsulation property, compositionally, by
only synthesizing necessary tests; this is in direct contrast to ESR which performs
the reduction of redundant test cases based on observation of service behavior.

As an example, consider the Audible example presented in Figure 3.1. By ex-
haustively testing Audible Download Service for failures of all of it’s downstream
dependencies, and then using the information learned from the Audible Download
Service’s responses to it’s upstream service when faults are injected, the Content
Delivery Service need only be tested for the failures can be actually returned returned
by the Audible Download Service, it's downstream. This corresponds to the results
presented in Chapter 10.

While it can be shown that this new algorithm is equivalent to the ESR algorithm
in terms of the number of tests required for exhaustive search’, its discussion omit-
ted from this dissertation. This is because the decentralized nature of microservice
application development, the independent development cadences of individual
services, and required infrastructure for sharing this information across different

Implemented in the FiLisusTER prototype in the open-source implementation.

Components of p-SFIT 129

repositories and different teams, all make it more operationally challenging (in the-
ory, but not evaluated) than just running the additional fault injection experiments
required for exhaustive search of all error code during testing. Similarly, it was
observed that there was little interest in this feature from application developers,
once built, while considered novel.

11.2.1 Structured Test Interface

To ensure structured happy path functional tests, an interface where explicit blocks
are used to delineate the stages of the testing lifecycle is proposed.

To address 1(a), explicit blocks are proposed for each stage of testing (e.g., setup,
assertions, tear down) to know precisely when fault injection should be used to
avoid injecting faults when setting up the test or performing assertions that happen
to use the APIs that are under test.

To address 1(b), each block will support abstraction via inheritance, allowing
developers to quickly create test variants that change the RPC method’s arguments
and slightly augment the assertions under fault-free or faulty executions.

This is necessary for two reasons: shared code paths and feature flag-based
variations. With shared code paths many RPC methods share a common code path
when handling requests that perform request validation and retrieve required infor-
mation from downstream dependencies using RPCs, for example, the user’s data.
With variations based on feature flags, many tests are variants of the same test with
either the same or slightly different assertions. For example, testing an experiment
(i.e., A/B test) that invokes the same RPC method with the same arguments and
performs the same assertions under a different configuration.

To address 1(c), the developer will be required to stub any invoked RPC method
and indicate precisely the number of times that the RPC method will be invoked
if that dependency is not either marked as read-only or not started as an external
service. This prevents the developer from writing tests where dependencies fail in
the “happy path” without knowing how many times they will be invoked. These
indications of desired invocations count will then automatically be adjusted (i.e.,
required invocation calculate one automatically is converted to 0 when a fault
is injected on that specific stubbed RPC.) when faults are injected to avoid the
developer having to perform that adjustment manually as required in SFIT.

11.2.2 Behavior-Under-Fault Encoding API

p-SFIT requires that developer state the behavior of their application under all RPC
failures to avoid assumptions around how an application’s behavior changes under
failure. Therefore, when updating tests to account for the application’s behavior

130 Principled Service-level Fault Injection Testing

under fault, p-SFIT should allow the developer to do this for both hard and soft
dependencies, and at increasing levels of precision (e.g., from any fault for a specific
RPC to a particular fault for a specific RPC with specific arguments), as necessary
by the p-SFIT testing process.

When it comes to hard dependencies, where a fault causes the API to return an
errot, the developer must indicate so. This ensures that any instances of error sup-
pression, where errors are re-written before being returned, are explicitly encoded
in the test. This forces the developer to enumerate the exceptions returned to the
upstream on fault. Similarly, for any fault propagated directly back to the upstream
without any suppression (i.e., unhandled exception), the developer must indicate
this behavior is desired. This is then verified by p-SFIT by ensuring that when a fault
is injected, it surfaces as an error in the test, thus avoiding cases where refactored
code inadvertently introduces suppression.

In these cases, the developer also will be forced to reassert how many times any
subsequent downstream dependencies will be invoked by indicating whether they are
read-only, where they may or may not happen when that error is returned, or side-
effecting, where they must(not) happen under any error returned to the upstream.
This explicit design is to automatically identify two different types of bugs: partially
applied side effects or a lack of required side effects. For the former, identify the case
where an error is returned to the user, but some side effects have been performed.
For the latter, identifying the case where success is returned to the user but some
side-effects have not been performed because of a fault.

For each returned error, developers must then encode the assertions that should
hold regardless of the fault that resulted in that error: for example, in the case
where two different errors result in a service throwing a gRPC exception with status
code NOT_FOUND. This is done both to ensure that the system state is consistent for
any faults that cause the same exception to be thrown and also to ensure that side-
effects are explicitly indicated for each exception. This avoids situations where the
same exception is thrown, but the system is left in different states, with side-effects
partially applied (or worse, unapplied), making it easier for the upstream, who
received the exception, to know whether it should retry the request.

Regarding soft dependencies — dependencies that, upon failure, do not cause the
upstream to receive an exception — the developer must indicate whether the test’s
existing assertions continue to hold or provide different assertions. This ensures
that developers think about the impact of failures by forcing a test failure.

11.2.3 Compositional Reasoning

While the developer should indicate the behavior of their application under fault,
requiring that they encode the precise behavior under all possible combinations of

Components of p-SFIT 131

faults is impractical. Therefore, some ability for compositional reasoning is required
to keep the testing process tractable and minimize the human cost.

The key observation that enables compositional reasoning is the following. First,
as described, RPC failures can have either no impact if a soft dependency, result in
different system assertions holding if a soft dependency, or thrown exceptions in
the case of hard dependency. The combinatorial explosion inherent to this style of
testing occurs when soft dependencies are failed simultaneously together. Therefore,
our key insight in reducing overhead in encoding failure behavior is the following:
any SFIT-generated fault injection executions that contain multiple faults, where at least one
of those failures has no impact, should be observationally equivalent to the SFIT-generated
fault injection execution that does not contain the faults that have no impact.

In short, if two RPCs fail in the same execution, that when tested individually in
separate executions did not cause assertion failures, and their simultaneous failure
should also not cause assertion failures. However, this may not be generally true
for all microservice applications, as developers cite code conditional on whether
or not two fail, itures occurred in the same execution, hence that they only may be
observationally equivalent. Therefore, rather than skipping the test execution, p-SFIT
executes the test assuming that the test outcome will be observationally equivalent;
if this isn’t true, the test will fail assertions normally and the developer will be
prompted to encode the behavior for this combination of faults. In practice, this
manifests itself in several different ways.

To demonstrate, consider the most straightforward case: RPCs that result in
thrown exceptions or a particular set of assertions holding when a fault is injected
combined with other RPCs that have no effect under failure in the same execution.
In this case, p-SFIT will assume that the same exceptions will be thrown or the same
set of assertions will hold under any of these combinations and explicitly test them
for this behavior. In the case that the test fails, the developer will then be prompted
by p-SFIT to explicitly encode the failure behavior for this combination of faults.

In more complicated cases, RPCs that result in thrown exceptions or a particular
set of assertions holding when a fault is injected are combined with other RPCs that
result in thrown exceptions or a particular set of assertions holding when a fault
is injected. In these cases, the system cannot determine which exception will be
thrown or what assertions will be true at the end of the execution. Therefore, the
developer will then be prompted by p-SFIT to explicitly encode the failure behavior
for this combination of faults.

In all cases, p-SFIT always executes the test and verifies the outcome: therefore,
no test case reduction is performed, but instead it is preferred to avoid burdening
the developer with writing the additional, redundant assertions if possible.

132 Principled Service-level Fault Injection Testing

11.2.4 IDE Plugin

In order to assist application developers in debugging failed tests and encoding
failure behavior, an Intelli] plugin was developed where the p-SFIT process is vi-
sualized: every test generated, each RPC invoked by each test, and the location of
every injected fault. This plugin also provides recommendations on how to resolve
failing tests based on both the injected fault and the surfaced failure.

11.3 Implementation

p-SFIT is implemented directly into the Java FiLiBusTER prototype [] and
provided as an open source Intelli] IDE plugin |], both available as open
source.

The design of p-SFIT is realized as a Java interface that each JUnit component
test will implement: FilibusterGrpcTest. This interface requires that each test
implements several abstract methods, each corresponding to one of the blocks
representing a stage in the testing procedure run by p-SFIT.

Executed in this specific order, there is a block for each of the following stages of
the testing procedure.

1. setupBlock
Test setup;

2. stubBlock
Stubbing of downstream dependencies;

3. executeTestBlock
Execution of the service RPC method that is under test;

4. assertTestBlock
Assertions on the response of the RPC method that is invoked in the test block;

5. assertStubBlock
Assertions on the invocation count of installed stubs and

6. teardownBlock
Test tear-down.

Finally, there is a failure block (failureBlock) that can be used for placing the
assertions on failure behavior, which is executed before the test. The placement
of assertions in this block is superficial: it is merely a location to encode failure
behavior that is separate from the main test code.

Implementation 133

As an alternative to using the FiLisuster supplied setup and tear-down blocks, de-
velopers may also use either the JUnit supported @BeforeAll, @eforeEach, @AfterEach,
and @AfterAll blocks: fault injection will automatically be inhibited for any RPCs
executed inside of these blocks. p-SFIT also provides a specific block type that can
be used in any test that inhibits fault injection for code placed within it that can be
placed in any block. Similarly, p-SFIT also provides an explicit block type that can
be used for bracketing different sets of RPCs together. This is done only for ease
of debugging tests using the associated IDE plugin, as it has no impact on fault
injection.

When any of these blocks are used, p-SFIT automatically brackets any RPCs
in its IDE plugin to indicate which block any RPCs executed in those blocks were
executed from.

11.3.1 Failure Specification API

In Table 11.1, the API that can be used in the failure block for encoding behavior
of the service under failure is presented. In the Java FiLisuster implementation,
this API is designed specifically for the testing of gRPC endpoints. Therefore it is
assumed that all thrown exceptions are of type StatusRuntimeException and are
instantiated by both gRPC code and description.

For the assertions on an injected fault, such as assertFaultThrows, assertOnFault
and assertFaultHasNoImpact, four variants exist: by method, by method and error
code; by method and request; and by method, request and error code. For the stub
invocation methods, readOnlyRPC and sideEffectingRPC, they are syntactic sugar
on top of the existing atLeast (@) and times(N) APIs, respectively. This is done to
force the developers to think about the implications of stating that an RPC can be
invoked an arbitrary number of times.

Should multiple faults be injected simultaneously in a test iteration, FiLiBusTER
provides the builder CompositeFaultSpecification, which test authors can use
to state the combination of the failing RPC requests. Test authors can use that
CompositeFaultSpecification object as a parameter in assertFaultThrows and
assertOnFault to assert their application’s behavior when multiple RPCs simulta-
neously fail.

11.3.2 Fault Matching API

Developers should also be able to encode faults at whatever granularity they choose.
For example, when injecting a fault on RPC 1 with status code UNAVAILABLE, the devel-
oper might use assertFaultThrows with arguments (RPC1, UNAVAILABLE, NOT_FOUND)
to indicate that the service throws an exception with status code NOT_FOUND when

134 Principled Service-level Fault Injection Testing

APl Description
(Usage Block)

stubFor Stub downstream dependency with response
(stubBlock)

verityThat Check that stubbed dependency is invoked N times
(assertStubBlock)

assertOnException Assertions for thrown exception on hard dependency
(failureBlock)

assertOnFault Assertions on RPC failure for hard & soft dependency
(failureBlock)

assertFaultThrows RPC failure of hard dependency results in exception
(failureBlock)

assertFaultPropagates | RPC failure of hard dependency as unhandled
(failureBlock)

assertFaultHasNoImpact | RPC failure of soft dependency has no impact
(failureBlock)

readon1yRPC Mark RPC to soft dependgncy as read-only
May be called 0 or more times
(assertOnException)

sideEffectingRPC Mark RPC t'O.S(.)ft depgndency as side-effecting
Needs explicit invocation counts
(assertOnException)

Table 11.1: Table of p-SFIT-enabled FiLiBuster assertion API and usage blocks for each API
method.

RPC 1 throws an exception with status code UNAVAILABLE. The developer could alter-
natively encode assertFaultThrows with arguments (RPC1, NOT_FOUND) to indicate
that the service throws an exception with code NOT_FOUND when RPC 1 throws an
exception with any status code. Either is correct, but their knowledge of the service
may influence the developer’s choice.

When FiLiBUSTER generates a subsequent test that injects a fault on RPC 1 with
status code DEADLINE_EXCEEDED, the service throws the same exception with the
same status code as a result of that fault injection. At this point, the developer in the
former case may either write an additional assertion for the new failure or refine
their test to indicate that any status code causes the exception to be thrown, as first
done in the latter case.

Implementation 135

To facilitate this matching approach, a method was necessary to characterize
each system fault. This method would enable SFIT to generate sortable projections
of each fault, organized in descending order based on the specificity of their fault
representation. This ensured that SFIT could match the fault behavior specified by
the user based on their intention.

Inspired by the distributed execution indexing algorithm, each fault is repre-
sented by the RPC’s signature where the fault was injected, the RPC’s request
arguments, and the description of the fault injected for that RPC. When match-
ing, SFIT first look for a matching use of one of the API functions by signature,
arguments, and injected fault. When no match is found, SFIT then decreases the
precision, first to the signature and arguments, then to the signature and code, and
then to the signature alone.

This seems to match the developer’s intent with the API:

1. First, the most precise match should be searched: the signature, arguments,
and code.

2. Next, any encodings that use an explicit request should be matched, as they
indicate multiple RPCs to the same method exist in the same execution, and
failures of each may be treated differently at different call sites.

3. Third, the signature and status code, as all failures of the same type are most
likely treated uniformly for a single request.

4. Finally, the developer may have just treated all failures for an RPC method
uniformly.

11.3.3 IDE Plugin

To facilitate application developers in the diagnostic assessment of failed tests and
encoding failure behavior, FiLisuster is provided with an Intelli] IDE plugin. This
plugin visualizes each test run generated and executed by p-SFIT, every RPC to
a downstream dependency within a specific test along with its arguments and
response, and each injected fault in their respective invocation sequences.

Figure 11.1 shows a screenshot of the plugin. For each of the 4 RPCs issued in
the reference execution, FILIBUSTER injects StatusRuntimeException with the status
code DEADLINE_EXCEEDED and UNAVAILABLE. This results in 8 executions with injected
faults (4 RPCs * 2 faults). In Figure 11.2 an iteration where StatusRuntimeException
with the code DEADLINE_EXCEEDED was injected in the RPC to (UpdateCart) is shown.

The plugin provides recommendations to the developer based on the test failures
that FiLiBusTeR identifies. These recommendations guide the developer: for example,

Principled Service-level Fault Injection Testing

136

L~ EndToEndFilibusterGrpcWithPricingAdjustmentServiceTest (1) ¥ C G

Filibuster Test Executions

(1) 9 EndToEndFilibusterGrpcWithPricingAdjustmentServiceTest. test() v

@

©) RPC Method

Test Block

UserService/GetUser

CartService/GetCart

PricingAdjustmentService/GetAdjustment

CartService/UpdateCart

RPC Arguments

Hello$GetUserRequest

{

"session_id":
"77497931-3aa2-4848-
8c57-40d92629c434"

Hello$GetCartRequest

{

"session_id":
"77497931-3aa2-4848-
8c57-40d92629c43d"

Hello$GetDiscountRequest

"code": "FIRST-TIME"

Hello$UpdateCartRequest

{

"cart_id":
"f00e3ae9-8197-4760~
83b3-91a238c9056f",

- Git:

RPC Response Fault
Injected?

Hello$GetUserResponse

{

"user_id": "88dladd9-
7304-4457-83f6-
be42433f6cad"”

Hello$GetCartResponse

{

"cart_id": "f00e3ae9-
8197-4760-83b3-
91a238c9056£",

Hello$GetDiscountResponse

"percent": "10"

Hello$UpdateCartResponse

{

"cart_id": "f00e3ae9-
8197-4760-83b3~
91a238c9056f",

Qa0

siulodpus e

Jesnqii4

s|peio R

aseqgeleq (((0

D
=/
(=]
v
o
=
o
g
S
o

SUONEIIYIION «B

Figure 11.1: FiLiBuster Intelli] plugin visualizes the intercepted RPC invocations and their arguments and responses.

137

Implementation

“3Je)93€epdN 03 UOT)EDOAUT D3 O} Ul Pajodur ST uoT3dadX3aWIIunysniels e aIoymM UOT)eId) ¥a1sndrL] ;g1 9ISy

pautzspun :,SSBIO, !, B9paE£96972Za-2q0q
= uoradraossp 4 ,aIqTIOXT ANITAYAA, =€£GIP-qBE0-T9TOEPZS,
QqIqITOXT ANITAYAA :,®poo,, 1,PT 3B,
= 3pod } }
[
S
©
Q©
= {
pd { WAWIL
5 .0T. :,3usozad, -Ls¥1d, :,9pod,
} } =
6
m 95uodsay1unodSTAISNEOTTSH 1S9nbay1uUNcISTAISD$OTTOH Juawisnlpy3a9/adTAIa53uUBWISNLPYSUTITId 8
°
8
3 ‘. BepUE969PZZA-Bq0] WPLZLB69DLTOP-ELO8 ’
= -€SFP-d8£0-T9TOEPTS., -q@67-1280-8PAAAIEE ,
[:,PT 3xEd, :,PT uoTSSes,
a k ’ 9
o asuodsay3Je)3a9$oT1eH 3sanbay3Je)389¢$0TT8H 34B)399/93TAJBSIJR) 5
e
8
m «APPISZR0OEYBO-908 WPLZL®69DLZOP-ELD8 ¥
— =3937-P09°—-LEFCRLE6, =q36y-1080-8PAqqdeeg ,
= :,pT 98N, :,PT uoTSSss,
} } €
K
m asuodsayaasn1an$oTToH 35anbay19snN3199$0TToH J3SMN339/33TAJBSI3sN z
o
&
v_UO_m umu._. _
g
o pa333lu) 3ney asuodsay Ddy syswin1y Ddy POY3W DdY (6)
0
.m
w
E e
4 ” ~ ()15917159180TAJ9SIUBWISN[PYBUTOTU4YI TMIAIDI8ISNGT T TJpuIoLpul [(1)
©
v
v — e suonnoax3 1sal J81snqi|i4
4 &0 U9 - D (1) 1sa1921MI351UBUNSNIPY BUIdLIdYN M9 81sNgl|IdpugoL pul AT

138 Principled Service-level Fault Injection Testing

if a test fails because a fault was injected and the developer did not encode the be-
havior under fault. For every exception that FilibusterGrpcTest throws, FILIBUSTER
has a defined diagnostic message that the plugin shows. That message describes
why the exception was thrown and provides links to the precise API methods that
developers need to use to resolve the issue. That includes errors for hard depen-
dencies, assertion failures for soft dependencies, and missing stub invocations for
under-specified dependencies. The plugin also provides an overview of the API
coverage of the service under test, prompting developers to increase coverage where
necessary.

Anecdotally, the author identified that in the process of writing tests using this
design, having a visual depiction of the failure with recommendations on how to fix
was extremely valuable. An error and recommendations generated by the FiLiusTER
plugin is shown in Figure 11.3 and Figure 11.4.

For the implementation, the Intelli] IDE plugin is a web view that renders infor-
mation that is written to the file system, by the FiLisusTer implementation. Therefore,
no actual logic lives in the plugin code itself. This was done to enable the develop-
ment of plugins for other IDE’s, such as Visual Studio Code.

11.3.4 p-SFIT Testing Procedure
The p-SFIT testing procedure is depicted in Figure 11.5.

1. setupBlock
Test authors should put code for the setup of the test in this block. The use of
this block inhibits fault injection for any RPCs issued in it. For example, if using
the service-under-test’s API to stage state for running a test, any downstream
dependencies that are invoked as part of the execution of the setup block will
not be tested for faults. Thereby, this ensures that faults do not prevent proper
staging before the execution of the actual test.

2. stubBlock
This block contains code for stubbing any downstream dependencies that need
to be stubbed for the test to pass. Stubbing of these dependencies should only
be performed using the FiLisuster-provided stubFor method as FiLiBusTer
needs to interpose on these mocks for fault injection testing.

3. executeTestBlock
The test execution code should be placed in this block. Any downstream
RPCs that are invoked as a result of a method invocation inside of this block
will be subject to fault injection. Test authors should store any responses
that are required for assertions, placed in the assertTestBlock, in instance

139

Implementation

“101ARYRq uonyedridde a3 surep 03 pasn aq ued jey) SpoyW [V
Surpre3ar suorepUIWIOddT SMOYS Urdnyd ¥a1sndrin] ayJ, ‘Jynej sy} I0j paumyap jou sI Joraeyaq uonpedridde a3 adurs syrey
1S9} YL, "48SN399 UI 3GV TIVAVNN P02 3} UM U0T3do0XJSWTIUNYSNILIS B PajOS(Ul YAISAAITL] SIYM ‘UOTIRIS)] ¢ T T InSr]

.PS6EEBPOTRED
.Sn3eis-odibeor -9pag-£89%-T0GT-2€963q13,
pautgspun = uoT3drIOS8p ¢ ETEVIIVAYND, :,PT uOTSS®S,

ATIVIIVAYNN = 3PO2

PECTRECTE

ipa323(u] 3ney asuodsay Ddy sauawngay Ddy POy DdY

' Notifications

TI0TdTISS3apOUIaN 5dT870T)S93e5ed0IdTINe 1 I8SSeR Wiy 359 15d15193SNqT 113

2y3ned 30u s1 3] snedaq wea.adsdn o3 sazeSedoud aunjiey Adadg

(801135 30T eAel“Spo) sn3e3s od1370T ‘103dTI0Seapoy 3o 04137 0T)SMOIY I[N J3IoSSe WY 35910d19193sNqr 14

poyIsw Dy 3|3uls & uo paidalul s13jney usym pa3d3dxa si aun|iey Aydads

(30TI3S 80eT EAe(3po) sn3e3s od1370T ‘9po) sn3eds 2d13 01 J03dTI0Sa0POyFeR 0dI3 0T)SMOIYIF N3 I8SSEHFTWIY 35810d19I93SNqI 1

:3pod smaeas JenonJed B yam poyasw Dy djduls B uo paidalul si 3jney usym paidadxa s| aanjiey Ajpads

(8UTIIS BUET EAB(3P0y snies 5dI870T 168y ‘3po) sniels oda870T J0TdTI5Sa(poyIaW odI87 0T)SMOI LT [Ne I3 19SSeRTWIY 150 [0d19I81sNqT 13
asanbad oly1pads pue apod snaeas JenonJed B am poyaaw Ddy 2[8uls & uo paidalul si 3ney uaym paidadxa si aJnjiey Adadg

(8UTI3S " SUET eAe(“Bpo) sn3e3s od1370T ‘U0TIeoT 108053 [Ne 103 1500W0) We3E3s I TUNL - 193SNqI 1] PNOTD)SMOIYLI[NEJ3I0SSeF WY 35910019193SNqT11d
'S3|NEY JO UOIIBUIGWIOD B I0) PId3[Ul §13|NE) UaYMm p123dxa s| un|re} Ajdadg

&

W
=
@
3
©
(a]
2
m

:2n|1gy s1y3 X1j 03 sAem 3|qissod aLos a.e sy UoiAeyaq uonedldde padisap si i3 | Iy

3nq e s1 s 1 pPaYd sy H

#))) Database

suoinjosay

T N N T T T L T I T I T o S O e P i e S e S e T T S T TR S T S N e T P T T eI S S e T T S T S NS e T TR S TS NN N T O T T T T

Je
(6sg:eael-3so10drnIo3sngTITd)23N09Xa 359L0dIDILISNQTITI "Wo3L3S " 3TUNL " I93SNQTTTF PNOTD 3B
"psAsTI}aI
9q 3ou pTnoo x9sn :3senbax ayz Axzex eseeld ‘swrl sTY3 3o pojaTdwoo o jou pPINOD aseyaand :ITAVIIVAYNN :uoTideoxgowrjumysniels-odib-ot |
*apod 10 3ssnbax ‘poyzsw STY3l uUo pa3lodalur 3Tney usym pejoadxs ST aanyTel AyToads o3 (- °°)sSmoryriTnegirsasse asn
*jquesaxd I0TARUYaq 2INTTeI JO uUOT3eDTFToads ou 3ng ‘uoTideoxs ue maIyl 3s9f :uoTideo
xgIoTARYSgaINT TRAPaTIToodsunseuoTIdeoxgumoayrodaniaisngITTd ‘ uoTideoxgauruny3sarodInIelsngTITd " 193sSnqT TS " suorideoxa - I93SngTITTF " pPnoTo (v4]

% Gradle

Filibuster

A "JuBsa.d IOIARYI 34N|1E} JO UOREDYIDAAS OU ING ‘UONABDXS UB MBJLYL 353) 3N|IE} LUORIBSSE JO 3SNEI3q pa|ie) 353 H{

A ()1593°18999TAI9SIUBWISN[PYBUTI T Y3 THRdIDIR3SNGTTTdpuToLpuT H¢ (1)

Endpoints

suoinoex3 1sal Jaisnqlid4

d
o
I
ﬁ;

~H 0 (1) 1sa1@a1niasiuawsnipy Bulodyimoadiosisngii{pujo] pug N 4 yoo|gisal 1iasse

Principled Service-level Fault Injection Testing

140

OVERVIEW PACKAGE TREE DEPRECATED INDEX HELP

ALL CLASSES SEARCH: —O/ x_
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

runnable - assertion block

assertFaultThrows

default void assertFaultThrows
(CompositeFaultSpecification compositeFaultSpecification,
io.grpc.Status.Code thrownCode, java.lang.String thrownMessage)

Use of this method informs Filibuster that any faults injected to this GRPC endpoint will
result in the service returning a StatusRuntimeException with the specified code and
message.

Parameters:

compositeFaultSpecification - CompositeFaultSpecification
thrownCode - the thrown exception's status code when a fault is injected

thrownMessage - the thrown exception's message that is returned when a fault is injected

assertFaultThrows

default <RegqT,ResT> void assertFaultThrows

(io.grpc.MethodDescriptor<ReqT,ResT> methodDescriptor,
Figure 11.4: Popup that appears when one of the recommendations is clicked. The popup shows the documentation page
of the respective method in FiLiBuster’s APL

141

Implementation

*1LI4S-d 103 arnpadoxd Sunsay, :

611 2131y

umopiesal
SuoNEI0AU| gnIs AJUaA A SUOILIBSSY WIOpad 1S3 aIN2ax3
asuodsayiouziapun uondaoxguQuasse. JnejuQouassy
~PIOHIONPIGSUORIBSSY ¢ anoaxa moyL apoosmeigpassaiddng
moayL smoIyL moiyL
Tomeuag p
.- .leIE A £yoreur suonduosap
ZsmoiyL pue sapoo Jou3
paawajdwiun o ~ainjfedsnonbiquiy Joneusg
-Odupaonul mou -aunjpe-y
MaiL Jnequouasse saA MoIyL -seH uonebedold
anoaxa saA -uondaox3 -lozpuy
¢pauyap X moiyL o
b S11|Ne4UOUSSE, 2paulap st
4 - on swoipinezuosse A
sams oA s sa
s oz o g,
cor e s %E:o%mwmﬂ 3
& &
5 ———on We sox: ox ——
Zsiney patoalur) TeyLAen £Iney 0dy s abuts solin] ¢pauyap st
10 asnesaq N T < spalul & =o g] ¢yorew suonduosap Zpauijap st serebedoid)ne-uasse nm\sokf;w
Aiuo 12} o g pue sapoo 1013 SMouy [neuasse
¢pauap &
SI UoROYLIBA
oy |SUONISSSYONSEHOQMPRAANIS plre-ppojgIsaluassy|)
Moy L MOIYL 3P0
-smeisio uondsoxa
ojgisaLsse v [J -uoniassy Mooy oK N
¥o0/gamsuasse anoaxg _BuissIn
anoaxg £SMoIL &oedwioNBARHS)Ne) Moyl ZsmoiyL £uopnoaxa jai s
ST, 10 uoANoaXa Ja1 S
¢
dmas Sqmis ppy

‘v‘|¥

142

Principled Service-level Fault Injection Testing

variables. FILIBUSTER executes the test code written in this block. If the test
is successful and no exceptions are thrown, FiLIBUSTER proceeds to the next
block. Otherwise, should the test throw an exception because of a failing RPC
invocation (referred to here as Ry), FiLiBuster distinguishes between two cases:

a) If the current execution is the initial reference execution where no faults
are injected, FiLiBusTER rethrows the exception and fail the test iteration.
FiLiBusTER shows the exception details in the IDE plugin.

b) Otherwise if a fault was injected in the current iteration, FiLiBusTer begins
by verifying that the authors have properly specified the failure behavior
of the application under fault in the test for a hard dependency. This
process is described below in Section 11.3.4.1.

assertTestBlock

Test authors should place test assertions here. The use of this block inhibits
fault injection, which is necessary when using the very API under test to
perform assertions. For example, if a test involves querying a user database
to initiate a subscription and subsequently querying again to confirm the
subscription, it is essential to introduce a fault solely during the subscription
phase’s user query and not during the verification phase.

In this block, FiLiBuster checks whether the current execution is the initial
reference execution or whether the faults injected in the current execution
have no impact. If either is the case, FiLiBUSTER executes the assertions defined
by the test author in the assertTestBlock. If they are successful, FILIBUSTER
proceeds to the next block. Otherwise, if they fail, FiLiBuster checks how many
faults were injected.

a) If more than 1 fault was injected, FiLiBusTER throws FilibusterGrpc_
MultipleFaultsInjectedException.

b) Otherwise, FiLiBusTer throws FilibusterGrpcAssertTestBlockFailed_
Exception.

Otherwise, if the current execution is not the reference execution and the
injected faults have an impact, FiLiBusTER executes the subprocedure associ-
ated with soft dependency failure. This process is described below in Sec-
tion 11.3.4.2.

assertStubBlock
Use this block for performing assertions on stub invocations. This should be
done using the FiLisuster-provided verifyThat method, as FiLiBuster must

Implementation 143

interpose on these calls to automatically adjust the expected invocation count
when faults are injected.

a) First, the assertions in the stub block are executed. Should they fail,
FilibusterGrpcAssertionsDidNotHoldUnder_ErrorResponseExceptionis
thrown.

b) Second, FiLisuster checks whether all RPCs that failed had injected faults.
If that is not the case, this indicates that some invoked RPCs were left
unimplemented. Thus, FiLisuster throws FilibusterGrpcInvokedRPC_
UnimplementedException.

¢) Third, FiLiBuster checks whether verifyThat was called on all stubbed
methods. If that is not the case, FiLiBustERr fails the test and throws
FilibusterGrpcStubbedRPCHasNoAssertions_Exception. Otherwise if suc-
cessful, FiLiBusTER proceeds to the next block.

6. teardownBlock
Test authors should use this block for performing test tear-down. Similar to
the setupBlock, fault injection is inhibited for any downstream dependencies
that are invoked as part of any method in this block.

11.3.4.1 Hard Dependency Subprocedure

This subprocedure is executed upon hard dependency failure, due to a fault injec-
tion, in the executeTestBlock block, when the test throws an unhandled exception
received by the application.

1. First, FiLiBusTER starts by checking whether the test authors have indicated that
the failure of Ry should propagate upstream (using assertFaultPropagates).

a) If that is the case, FiLibusTErR perform a sanity check whether the test
authors have simultaneously defined an exception-throwing behavior
for Ry (using assertFaultThrows). Defining both assertFaultThrows
and assertFaultPropagates for Ry indicates ambiguous failure behav-
ior. If true, FiLiBusTer throws FilibusterGrpcAmbiguousThrowAndError_
PropagationException.

2. If the sanity check is successful and only assertFaultPropagates is defined
for Ry, FiLiBusTER proceeds to check whether the status code and description
of the propagated fault match the code and description of the injected fault.

144 Principled Service-level Fault Injection Testing

a) Ifthey donotmatch, FiLiBuster throws FilibusterGrpcSuppressedStatus_
CodeException.

b) If the status code and description match, FiLiBusTer proceeds to check
whether test authors have defined assertions for the exception-throwing
behaviour of Ry (using assertOnException). If that is the case, FiLiBusTer
proceeds to the next block. Otherwise, FiLiBusTER throws Filibuster_
GrpcMissingAssertionForStatusCodeException.

3. If test authors have not indicated that failure of Ry propagates upstream,
FruiBusteR checks if they instead defined that failure of Ry results in the service
returning an exception (using assertFaultThrows).

a) In case assertFaultThrows was not defined, this indicates unspecified
failure behavior for Ry and FiLisuster throws FilibusterGrpcThrown_
ExceptionHasUnspecifiedFailureBehaviorException.

b) If thatis not the case, FiLiBuster throws FilibusterGrpcFailedRPCException.
4. Otherwise, FiLiBusTER checks whether test authors have defined assertions for
the exception-throwing behaviour of Ry (using assertOnException).

a) If that is the case, FiLiBusTER proceeds to the next block.

b) Otherwise, FiLiBusTER throws FilibusterGrpcMissingAssertionForStatus_
CodeException.

11.3.4.2 Soft Dependency Subprocedure

This subprocedure is executed upon soft dependency failure, due to a fault injection,
in the assertTestBlock block.

1. First, FiLiBusTER proceeds to check whether test authors have defined alterna-
tive assertions that apply when a fault is injected (using assertOnFault). If
that is the case, FiLiBusTER executes these assertions.

a) Should they fail, FiLiBuster throws FilibusterGrpcAssertOnFaultException.

b) Otherwise, if they are successful, FILIBUSTER executes the assertions de-
fined in assertOnException. If the assertions fail, FiLiBuster throws
FilibusterGrpcAssertionsForAssertOn_ExceptionFailedException. Oth-
erwise if successful, FiLiBusTER proceeds to the next block.

Takeaways 145

2. If test authors have not defined alternative assertions in assertOnFault, FiLi-
BUSTER differentiates between two cases:

a) If FiLiBUSTER is injecting a single fault, the lack of assertOnFault indi-
cates there is no specification of failure behavior. Thus, FiLiBusTer throws
FilibusterGrpcInjectedFaultHasUnspecifiedFailureBehavior_Exception.

b) If more than one fault is being injected, FiLiBuster checks if composi-
tional reasoning potentially defines the fault behavior. If that is the
case, FILIBUSTER proceeds to the next block. Otherwise, FiLiBusTER throws
FilibusterGrpcAmbiguousFailureHandlingException.

11.4 Takeaways

Principled Service-level Fault Injection Testing (p-SFIT) improves on SFIT by providing
a structured, developer-centric methodology for resilience testing.

More specifically, p-SFIT is a software development process that extends the SFIT
approach for applications that are designed to gracefully degrade under failure,
as observed in our industrial evaluation with Foodly. It improves the process of
both writing structured happy path functional tests and then updating those tests to also
account for the application’s behavior under failure. Through the application of SFIT to
an industrial application, requirements were derived based on observations from
their test code, which led to the redesign of SFIT as p-SFIT, which has led to latent
bugs found by engineers at Foodly.

In Appendix A, a tutorial on using p-SFIT is presented, demonstrating how the
p-SFIT can help developers update tests to encode failure behavior in their functional
tests based on fault injection.

Chapter 12

Conclusions

“The race doesn’t always belong to the swift nor the battle to the strong. It
belongs rather to those who run the race, who stay the course, and who fight the

good fight.”

Carl Yastrzemski

Fault injection testing is one of the predominant techniques used by the devel-
opers and operators of industrial microservice applications today for testing their
applications for resilience to both infrastructure and downstream service failures. It
is mainly performed on a microservice application, in production, where customers
may be adversely affected when application resilience bugs are triggered by this
testing.

More often than not, coarse-grained application metrics are used to detect the
presence of application resilience bugs during fault injection testing in lieu of a
specification of application behavior. This often can result in either of two possible
outcomes, both of which are not useful in the identification of application resilience
bugs. In the first case, fault injection testing is used to test a dependency of a service,
which is required to complete successfully by its caller, and results in a elevated error
rate of the service under test. In this case, the fault injection testing only confirms
that the application is working by design.

In the second case, however, the use of coarse-grained metrics for bug detection
may hide customer-affecting issues if they are either infrequent or do not effect a
large segment of the customers of an application. For example, consider the case of
a service that is allowed to exhibit a 0.01% error rate under the assumption that all
possible operations that may fail do not result in side effects. When an operation is
introduced that does result in one or more side effects — themselves RPCs to other
services — any failure may result in the application being left in an inconsistent state

147

148 Conclusions

by only partially applying side effects, without triggering any metrics-based alerting,
nor be otherwise detectable during fault injection testing.

A service’s error rate, and the coarse-grained metrics that track it, only tell part of
the story: when a service takes a hard dependency on second service that returns an
error when called, resulting in the first service returning an error to its caller. Often,
however, services take soft dependencies on other services, where any failure of a
RPC is either ignored or otherwise compensated for by the calling service. These
soft dependencies can take on several forms of increasing complexity.

Consider the following examples, which are not comprehensive:

e Service A takes a soft dependency on a read-only API of Service B, where
Service B’s response does not influence Service A’s response at all.

e Service A takes a soft dependency on a side effect API of Service B, where
Service B’s response does not influence Service A’s response at all.

e Service A takes a soft dependency on a read-only or side effect API of Service
B, where Service A includes Service B’s response in the payload returned by
Service A.

e Service A takes a soft dependency on a read-only or side-effect API of Service
B, where Service B’s response is used in a subsequent read-only or side effect
API of Service C, which may or may not be a soft dependency itself or appear
in the response payload returned by Service A.

In all of these examples of soft dependency usage, none of the examples, under
any fault injection testing applied to the soft dependencies of a calling service, alter
the error rate of the service that takes the soft dependency (i.e., Service A.) In
fact, only some of them altered the response payload of the calling service, also
undetectable through coarse-grained metrics. Even further, none of them directly
alter the error rate of the called service either (i.e., Service B, Service C.)

In this dissertation, all of the resilience bugs that were discovered as part of
the industrial evaluation exhibited the most complex form of soft dependencies
usage and were undetectable through coarse-grained metrics. Specifically, the
application resilience bugs identified all took the general form where some Service
A makes a RPC to a soft dependency Service B, whose response was then used in a
RPC to a soft dependency Service C. Service C then performed side-effects, where
neither the response from Service B or Service C are either included in the response
from Service A. As both Service B and Service C are soft dependencies, they do
not cause Service A to have an increased error rate on failure of either dependency.
Furthermore, engineering work performed by the author of this dissertation, after

149

completion of the industrial evaluation, unrelated to fault injection testing, and
performed at the same industrial partner, identified additional application resilience
bugs of this same shape. In all cases, these application resilience bugs had gone
unnoticed by coarse-grained metrics and were only identified through violated
assertions on subsequent end-user requests in the application, a result of side
effects that were not performed where one or more soft dependency failures were
swallowed on a previous end-user request.

When considering one who truly wanted to use a coarse-grained metrics ap-
proach alone for the identification of application resilience bugs with fault injection
testing, they would have to use several of the following approaches in concert to
successfully identify application resilience bugs:

First, they would have to examine the error rate of all other services that consumes
the response from another service who has had fault injection testing performed
on any of its dependencies. For example, by examining the error rate of Service
Z, which consumes responses from Service A, whose response payloads may be
missing information as a result of a fault injection to its soft dependencies, Service B
or Service C. This type of analysis is impractical for applications with hundreds of
services that each contain a non-trivial amount of direct and transitive dependencies.

Second, they would have to examine the error rate of all other services that share a
dependency with the dependency chain where the fault was injected on a service’s
soft dependency. For example, by examining the error rate of a Service D, that
reads the side effects performed by Service C, when Service C was previously called
by Service B, as a result of a request to Service A. Again, this type of analysis is
impractical for applications with hundreds of services that each contain a non-trivial
amount of direct and transitive dependencies.

Third, they would have to examine the week-over-week metrics of all direct and
transitive dependencies of a service in order to identify where fault injection prevented
a side effect that should have occurred. For example, where Service A calls Service
B, which itself calls Service C to perform a side effect, where there is an absence
of that call due to a fault injection on the call to Service B that does not alter the
response returned from Service A. As with previous uses of coarse-grained metrics,
this absence may go unnoticed or be not observable, by any metrics, at scale.

Fourth, and as a last resort, they would have to use logs to identify errors, during
fault injection testing, across all direct upstream and direct and transitive down-
stream dependencies. At scale, in production, where dependencies are constantly
added and evolved, and removed, this is not feasible.

In short, none of these approaches, even considered independently, are feasi-
ble for the identification of application resilience bugs in industrial microservice
applications: they are cumbersome, ad-hoc, and error prone. Therefore, in order
to successfully identify application resilience bugs in microservice applications

150 Conclusions

with fault injection testing, one must specifically indicate, when testing a service in
isolation to failures of its direct dependencies, what side effects should be performed
in both the successful case (where no faults are injected) and in all possible fault
injection scenarios, where faults may be injected on one or more direct dependencies.

In this dissertation, it was shown that an exhaustive fault injection testing
technique combined with principled approach in test authorship can be used for
identification of these deep application resilience bugs involving soft dependency
failures. First, an exhaustive fault injection technique is necessary for ensuring that
all faults, and all combinations of possible faults, are explored during fault injection
testing. This exhaustiveness ensures that all code paths, specifically code paths that
are conditional on RPC success or failure, are explored. Second, in order to detect
the absence of remote calls that result in side effects, developers must specifically
indicate which calls are allowed to occur when the calling service returns either
failure or success to its caller. This ensures that developers are aware of actions
that either do not occur or only partially occur, under failure: the cause of many
errors produced by subsequent RPCs that assume that side effects were successfully
performed in total. However, writing these tests and understanding the possible
failure scenarios is a complicated task, and therefore to enable application developer
success this approach also provides a visual component with interactive test author-
ship coaching and visualization of RPC executions. Following this methodology
allows developers to identify application resilience bugs, in development, prior to code
shipping to production and alleviates the need of metric observation at any granularity.

Finally, while the problem of microservice application resilience is not new to aca-
demic researchers, access to industrial applications has limited the existing research.
First, existing academic research has failed to capture the inherent complexity intro-
duced by the two different types of service dependencies that exist in microservice
applications. Second, without industrial applications academic approaches are
often misaligned with the need of industrial practitioners when it comes to bug
identification and testing processes.

In this dissertation, a new fault injection technique and test authorship ap-
proach was co-evolved with an industry partner, which develops and operates a
large-scale microservice application used by millions of customers every month,
in order to understand precisely what developers were looking for (and needed
to be successful) in a fault injection approach.

Summary. Insummary, this dissertation makes significant advancements over the
existing work in microservice application fault injection testing in several areas. First,
it is improves accessibility to realistic microservice faults and resilience techniques in
microservice applications by constructing an application corpus containing applica-

Takeaways 151

tions exhibiting those characteristics. Then, it presents the design of a new technique
for RPC identification in a microservice application and uses that technique to de-
sign a novel technique for microservice application fault injection. This technique is
both evaluated both on the established corpus and in an industrial setting. Using
the knowledge gained from that evaluation, the corpus is then extended with a
more realistic industrial application, and the technique redesigned to align more
closely with the industrial practices of microservice application development.

12.1 Takeaways

In this section, a summary of the takeaways for the contributions of this dissertation
are presented.

In Chapter 2, it was shown that academic and industrial practices are converging
when it comes to fault injection and fault prevention in microservice applications.
Specifically, industrial practices seem to be evolving towards more principled ap-
proaches: detection of bugs through fault injection in development, prior to deploy-
ment to production, using library-level approaches and automation. This seems to
indicate that there is a desire from industry practitioners to identify critical resilience
bugs before application code is in production, where bugs may become both more
costly in terms of response and potential financial impact. In contrast with recent
academic research that focuses on automating chaos experiments in production,
this dissertation specifically targets the direction industrial practices are moving;:
the detection of resilience bugs prior to application code shipping to production.

In Chapter 3, a new classification of microservice application dependency types
was established: hard vs. soft dependencies. Not only this dissertation is the first
academic literature to use two realistic industrial examples to demonstrate these
different types of microservice dependencies and their role in microservice resilience,
this classification has since replaced their previous (unclear) terminology of “fail
open” and “fail closed” used by our industry partner Foodly to describe microservice
dependencies and their failure behavior.

In Chapter 4, a microservice corpus was established that contained a collection
of small demonstrative microservice applications containing common microservice
resilience patterns and microservice application bugs related to resilience. While this
corpus is not the first corpus of microservice applications, it fills need for microservice
resilience research by providing applications containing bugs and resilience patterns,
similar to the bug corpora used in software engineering research on monolithic
programs. Since the open-source release of this corpus, it has been used by other
researchers in microservice resilience.

152 Conclusions

In Chapter 5, a new tracing technique was presented that identifies RPCs, exe-
cuted by a microservice application, in a consistent manner across different execu-
tions of the same code. This tracing technique is unlike any tracing technique that
exists currently for microservice applications, as it is specifically designed for use in
dynamic analysis and not for production tracing. Not only can this be used to sup-
port exhaustive fault injection, as is the focus of this dissertation, it was also shown
that it could be used by several other types of dynamic analyses (e.g., microservice
smell detection).

In Chapter 6, an exhaustive fault injection technique was presented for microser-
vice applications. This technique was shown to be integrated with the existing de-
velopment and testing processes of developers, leveraging their existing functional
tests, without requiring a specification. This is critical for industrial adoption, where
the overhead of requiring a specification is too much to bear. It was also shown that
under certain application designs, where graphs favor depth over breadth — the nat-
ural decomposition of microservice applications from their monolithic counterparts
— that optimizations are possible to reduce overhead in fault space exploration.

In Chapter 7, both the tracing technique and its use in the new fault injection
technique was evaluated against the synthetic application corpus. It was first demon-
strated that this tracing technique can be used to identify individual RPCs in a
microservice application uniquely and deterministically, thereby facilitating an ex-
haustive search. When evaluated in combination with the fault injection technique,
it was shown that all bugs seeded into the synthetic application corpus could be
identified both quickly and in a development environment, prior to deployment to
production. Finally, it was shown that when graphs take on the natural decomposi-
tion, as in a module-based monolith, possible optimizations can yield significant
benefits in terms of testing time.

In Chapter 8, the description of a large-scale industrial microservice application
was presented. In this description, it was shown how for many use-cases fault injec-
tion in production is not possible due to possibility of customer impact. From there,
it was shown that any microservice application resilience testing technique must be
exhaustive, in order to find corner-case bugs, and that automation is necessary for
applying this to services that contain a large number of downstream dependencies.

In Chapter 9, an industrial evaluation of the fault injection testing technique was
presented. This evaluation identified a number of notable drawbacks and design
limitations that would inhibit adoption in industrial settings.

The first design limitation is that industrial microservice applications are simply
too large to be tested as a wholesale application; instead, individual services need to
be tested in isolation for their tolerance to failures of their direct dependencies. The
second design limitation is that without a principled approach to test authorship,
it is much too easy for application developers to write tests that do not contain

Discussion 153

strong enough assertions needed for bug identification. The third and final design
limitation is that the process of writing a single test that captures both the appli-
cation behavior when there are not faults present in the system and when there
are faults present in the system, contains much to overhead as it is a new manner
of test authorship that developers will be unfamiliar with. Therefore, in order to
be successful with fault injection testing, any technique must be paired with an
mechanized approach that guides the developer during this process.

Finally, as demonstrated, the challenge of fault injection testing is not only tech-
nical — as in, adaptation of the fault injection technique to work on much larger
applications — but, it is also socio-technical, in that the process taken on by appli-
cation developers of introducing fault injection testing into their daily workflows,
must also be addressed.

In Chapter 10, differences between the constructed synthetic corpus and the
evaluated industrial microservice application were presented. From there, it is
shown that the complexity of industrial microservice applications — containing a mix
of hard and soft dependencies — is arrived at by attempting to improve the resilience
of an industrial application to dependency faults. This is often how resilience bugs
is introduced. Therefore, it became necessary to construct a new synthetic example
for the corpus that resembles an industrial microservice application more closely.

In Chapter 11, a new fault injection testing process was presented that provides a
structured, developer-centric approach for microservice resilience testing. This pro-
cess extends the existing fault injection technique for applications that are designed
to gracefully degrade under failure, as observed in our industrial evaluation, and
inherent in the use of soft dependencies. It improves both the process of writing
the required structured happy path functional tests required for capturing the full
behavior of a service when no faults are present, and then assists the developer in
updating those tests to account for the service’s behavior under fault. To ensure
that this process was aligned with the manner in which industrial application de-
velopers build, test, and deploy their services, the requirements were derived based
on observations of these processes and test code of Foodly, the industrial partner.
This process has since resulted in the discovery of latent application bugs related to
resilience at Foodly.

12.2 Discussion

SFIT, p-SFIT, and the open source FiLiBusTER prototype stand alone in the fault
injection space by providing a principled approach for fault injection testing of
microservice applications.

154 Conclusions

SFIT. When it comes to the technique, SFIT, it is the only fault injection technique
that is designed specifically for microservice applications that can provide exhaus-
tive search with deterministic replay, in the presence of concurrency, without the
requirement of deep instrumentation or scheduler control.

When compared to the most recent academic approaches targeted at (or adjacent
to) microservice applications, they often fail to consider programming patterns
and behaviors common to industrial microservice code: for example, either by
failing to consider concurrency and its effect on permutation of RPC execution
order [] or by failing to consider that the same RPC may be executed from
multiple locations in the code for the same application execution |]

In terms of industrial approaches, most focus on low-level, coarse-grained instru-
mentation in order to avoid any instrumentation of the application at all. In contrast,
SFIT and it’s prototype implementation FiLiBuster, demonstrated how application in-
strumentation can be performed in a lightweight way and automatically through the
use of a javaagent. By performing instrumentation at the application level, a more
comprehensive set of faults can be directly tested; this is in contrast to approaches
that must trigger high-level application failures through low-level fault injection.
As discussed, one such industrial solution attempted this style of application-level
instrumentation, but since abandoned it due to the level of complexity involved.

Most industrial approaches still rely on fault injection at the granularity of an
individual service: in that, if Service A makes multiple RPCs to Service B, the only
failure that can be simulated is the wholesale failure of Service B. This is unrealistic
because multiple calls, to different endpoint with different arguments, can either
be simultaneously operational or non-operational. For example, consider the case
where only certain arguments to an RPC made to endpoint X of Service A are
failing where multiple calls are made to Service A’s endpoints X and Y with different
arguments. SFIT provides a solution to this problem by targeting individual RPCs
for fault injections during fault injection testing enabling exhaustive exploration
for all possible faults that an application may be susceptible to.

p-SFIT. As discussed in this dissertation, one of the fundamental problems with
the fault injection testing of microservice applications is knowing precisely what the
application should do when faults are present. p-SFIT provides the foundational
process that assists developers in answering this problem. It first requires that
developers specity, in total, the behavior of their service when no faults are present.
Then, through an integrated IDE plugin, fault injection visualization, and code
snippets and recommendations, it assists the developers in adapting those tests to
account for all possible failure behaviors. Where possible, p-SFIT tries to minimize
the requirement of manual specification of behavior by inferring what it already

Discussion 155

knows from what the developer has specified so far: this inferred behavior is then
checked against the application and only when it does not hold, is the developer
prompted to add additional information in the form of assertions.

When it comes to academic approaches, most have relied on developer specifi-
cations of the behavior of the system (or application) under test []. This
is somewhat straightforward when testing a database or distributed system that
employ replicas (e.g., serializability, linerizability, causal consistency) but much
more complex in a microservice application that is built and adapted to stay func-
tional and degrade gracefully under failure, as some failures are permitted. As
an alternative, one academic approach has tried to address the problem from an
alternative direction by simplifying their classification of a bug as any operation
that throws an exception in application code that is surfaced to the user under fault
injection |]. This is problematic for several reasons.

First, the boundary between application code and library code is blurry: for
example, at our industry partner RPCs traverse multiple “in-house” libraries in
application code before reaching underlying third-party framework and standard
library code, making it difficult to know what is and is not a bug. Second, as many
RPC libraries throw exceptions by design, this boundary is further blurred. In fact,
using this criteria alone, this dissertation identified hundreds of false positives
where the application threw an exception to an upstream service indicating that a
request could not be processed because a hard dependency was unavailable: desired
behavior of the application. Third, and finally, as demonstrated in this dissertation,
most microservice resilience bugs that remain undetected are bugs where something
didn’t happen, which should have. In this case, only a full specification of behavior
when faults are not present can be used to identify these bugs.

In short, knowing what a microservice application should do under failure
cannot be automatically determined and requires input from the application
developer. This is key because the behavior may be either be counter-intuitive,
otherwise not straightforward, or rely on actions for remediation that occur outside
of the actual application, as was the case of one of the bugs discovered during the
testing of an industrial application performed in this dissertation. Therefore, the key
is to forego any mechanized approach to bug classification and instead provide a
mechanism for the developer to easily confirm or deny observed behavior through
testing and easily encode that behavior into functional tests of their application.

FiLisuster. When it comes to the experience of using FiLiBusTer none of the exist-
ing academic or industrial tools come close to the vertically integrated experience
provided by FILIBUSTER.

In terms of academic approaches, GraphViz has been used to provide visual

156 Conclusions

depictions microservice RPC’s executed in an application with the location of fault
injections at high-granularity []. On the industry side, some software-
as-a-service offerings provide a visual component for the design of fault injection
experiments through a web-based user interface.

In contrast FiLiBusTER provides an unparalleled vertically integrated fault
injection testing experience alongside the tests you are authoring in IntelliJ. This
includes visualization of RPC’s (with arguments and invocation order) executed by
the current test, the location of precise fault injections, a list of synthesized tests by
the fault injection and code snippets with integrated JavaDoc. Even further, and
not discussed in this dissertation, the Intelli] plugin also provides basic linting for

RPCs to help identify redundant RPCs |] and inefficient RPC chains, | ;
| as well as a visualization of endpoint RPC API coverage by the current test
suite for the current service [; ;

Competing Approaches. When the initial development of the Python FiLisuster
prototype was complete, this prototype was used to pitch Foodly on the partner-
ship that we ultimately established over the following two years, where: the Java
FiLiBuster implementation was built, integrated into the OpenTelemetry Java in-
strumentation, and the p-SFIT technique was evolved over several months with
trial-and-error using one service at Foodly.

During this time, two teams within Foodly were working on fault injection testing
independently. The first team was a Site Reliability Engineering (SRE) team that
was working on deploying Litmus, an infrastructure coarse-grained fault injection
tool, across the Foodly’s infrastructure. The second team was a team who had
seen the original FiLiBuster pitch at Foodly and given that Java FiLiBuster was not
yet complete, decided to implement their own fault injection testing framework
inspired by this (at the time, yet incomplete) dissertation. Their target was to test
their individual service to failures of downstream dependencies.

The first team was successful in deploying Litmus across the infrastructure of
Foodly and used it for several chaos engineering style experiments. As Litmus
requires that developers design their own experiments, these experiments often
took the form where a fault was injected on RPCs to a service that was a known
hard dependency: merely only confirming that the application behavior was as they
expected it to be. Experiments of this type, while useful for validating that metrics
and alerting work properly, (i.e., validating the socio-technical response) are much
too simplistic to discover application bugs. However, this experimentation, while
carefully designed and executed, was not without adverse impact: in fact, several
of the chaos engineering style experiments that they ran resulted in production
incidents that affected customer’s ability to use the service. This is a high cost to pay

Discussion 157

to only confirm that application behavior is as one would expect. In contrast, SFIT
provides a manner to perform this same type of experimentation, in development,
before code ships to production where there is no risk of adverse customer impact.

When it comes to the second team, they also had a goal of experimentation in
production, but with a minimized blast radius to avoid adverse customer impact.
Similar to FiLiBusTER, their technique uses RPC metadata to include information that
could be used to drive where faults were injected. However, instead of embedding
identifiers into metadata, which would be used to determine precisely on which
RPC to inject a fault, header information would contain an RPC by name, where a
fault was injected. For example, by stating that a fault should be injected on RPC
X that is issued between Service A and Service B. This is in direct contrast to the
granular fault injection provided by SFIT, and is closer to a coarse-grained fault
injection approach that considers services as the unit of failure: insufficient for the
detection of deep application resilience bugs.

This functionality was built and integrated into the core RPC and service frame-
works of Foodly and designed to be operated in an isolated production environment
where a test version of the application could be used to perform actions using the
service. Since the development of this technique, it has seen adoption across Foodly
as a quick and easy way to get started with fault injection testing, as it is already in-
tegrated into all of the existing development tooling and can easily be performed in
an isolated, production-like environment. While this speaks volumes about the user
experience of a fault injection tool and its adoption, in contrast to the contributions
of this dissertation, this methodology is also shallow for several reasons.

First, as discussed, targeting a particular RPC by name is not sufficient for the
identification of bugs: several RPCs may be made to the same RPC endpoint where
only failure of one (with the others succeeding) may trigger a bug if application
behavior is conditional on a certain one of those RPCs failing. It is believed that this
design may have been derived either under the assumption that services typically
fail “wholesale” — where they either respond to RPCs successfully or do not — or
that services do not make RPCs the same downstream dependency twice in the
same execution, both of which are not true generally. Second, and more generally,
targeting only a single RPC is not sufficient for the identification of bugs: failures may
only be triggered if multiple RPCs fail in the same execution — for example, by failing
an RPC that is only triggered in a fallback path once an initial RPC fails. This design
may have been derived under an assumption that default values are often used
instead of fallbacks for RPC failure, which also is not true generally. SFIT is the
only fault injection technique that provides the granularity necessary for the
identification of application resilience bugs in the presence of multiple RPCs to
the same RPC method in the presence of concurrency.

Third, it is often that the absence of a side effect triggers an application bug: for

158 Conclusions

example, by not performing an RPC which results in a side effect, when it otherwise
should have been performed. As demonstrated by the bugs that were identified
during the evaluation of FiLiuster on Foodly’s microservice application, these
often happen when a fault is injected on an soft dependency that then causes a
subsequent RPC — hard or soft — to not be executed at all. Testing an application
through its user interface, with coarse-grained fault injection (i.e., by RPC name)
without visibility into what RPCs are not occurring therefore is not sufficient for the
identification of these bugs when soft dependencies are employed — the application
will show no error as the dependency is soft and the absent side effect will only
affect future user operations. All bugs identified in this dissertation were of this
classification, and all went undetected through coarse-grained metrics due to their
rare occurrence with respect to overall application load. Most likely, these types
of bugs were unknown to the developers of Foodly, as it was discovered during
the writing of this dissertation and had not been previously discussed at all in any
academic literature. p-SFIT provides the necessary approach for the identification
of deep application resilience bugs which involve side effecting soft dependencies
which do not result in errors under failure.

Bug Identification. Identifying these deep application resilience bugs using the
existing application’s test suite was also difficult. When applying SFIT to Foodly’s
existing functional test suite, it was identified that many of the tests that developers
were writing for their services were underspecified: they merely executed the code
path and made assertions on the response returned by the service under test. In
fact, it was discovered that SFIT could inject faults on almost all of the RPCs that
were executed by a test without triggering an assertion failure of the test. Essentially,
almost all dependencies were soft dependencies; in other cases, all dependencies
were hard any any fault injection triggered a (trivial) assertion failure. This lead
to the realization that SFIT would only be successful in identifying bugs when
tests were written with a high enough fidelity that they included whether or not
the dependencies that were invoked were soft or hard. This directly lead to the
design and development of p-SFIT, which integrates with an application’s ex-
isting functional test suite and allows for precise specification of hard and soft
dependencies in order to determine allowed what RPC failures are “admitted”
under fault injection and which result in application bugs.

Once functional tests were written to a fidelity enough to capture valid bugs
related to fault injections, explaining these bugs to application developers still
remained difficult a challenge because they often involved executions involving
multiple RPCs where a fault was injected on one particular RPC in a sequence of
many successful RPCs. Not only did this require application of the terminology

Discussion 159

of “hard” and “soft” to dependencies to provide a uniform manner to talk about
RPCs that trigger error responses and RPCs that do not trigger error responses —
since adopted by Foodly replacing previous unclear terminology — it also required
a mechanism for visualization of the RPCs executed by a test and where faults were
injected in an execution that resulted in an assertion failure of a functional test.

Not unlike third-party services such as LightStep [Lig] and Grafana [Gra],
p-SFIT allows developers to visualize RPC executions as a trace with the casual
dependencies between highlighted. However, what differentiates p-SFIT from these
services is that these visualizations of RPC executions are directly integrated into
the developer’s IDE and tied to a specific test execution that they are interactively
running. As an added benefit, as they are only designed for use in the testing
and debugging scenarios, they include the invoked RPC’s request and response
payloads: not available in tools designed for production sampling where overhead
is too high.

In short, p-SFIT is the only exhaustive fault injection approach for microservice
applications with an integrated development environment for visualization of
RPC executions and fault injections, necessary for helping application developers
understand complex failure scenarios and the impact they have on their functional
test’s assertions.

Test Adaptation. As developers write functional tests with integrated fault in-
jection testing, they are bound to run into issues with incorrectly classifying de-
pendencies as hard or soft and writing incorrect test assertions. Therefore, it was
necessary to provide a mechanism that, in easy-to-understand terminology, could
explain to developers why a test failed under fault injection and identify what they
did incorrectly in their code.

To solve this problem, p-SFIT provides an “coaching” interface that instructs
developers on the correct process to update their tests — using integrated JavaDoc
and code snippets. This helps developers use the correct APIs to use to classify
dependencies as hard or soft and how to indicate precisely, when dealing with each
dependency, the associated assertions. This design was based on feedback gathered
when writing tests without p-SFIT and the difficulties in properly specifying this
using standard Java code.

Finally, in order to avoid the overhead in writing tests for all combinations of
possible faults, p-SFIT tries to automatically infer application behavior under combi-
nations of faults using the developer specified application behavior for individual
faults, only prompting developers to encode the specific behavior under one or
more faults when ambiguous. This design was based on feedback received from
developers where they commonly only consider faults in isolation, as demonstrated

160 Conclusions

previously in Foodly’s own fault injection framework’s design.

p-SFIT is the only exhaustive fault injection methodology for microservice
applications with integrated developer “coaching” on how to properly write
functional tests for bug discovery, necessary as the concept of encoding the
behavior of an application under failure is new to application developers.

Dissertation-Adjacent Work. The research in this dissertation has directly resulted
in two pieces of distinct related work in the microservice application resilience area.

First, and most notably, FiLisuster has been used to understand the impact of re-
silience mechanisms such as circuit breakers and load shedding. More specifically, re-
search into understanding how resilience mechanisms can introduce adverse effects
when activated by disabling correctly functioning parts of the application to contain
a failure has been performed by the author of this dissertation at Foodly []
Since then, Foodly has decided that circuit breakers are no longer an approach that
should be universally applied across their services, as a number of recent incidents
have taken the precise form as identified by this research.

Second, service failures are not the only thing that can affect microservice appli-
cations, as microservices also take dependencies on queues, databases, and caches.
To that end, the author of this dissertation also supervised a master’s thesis | ;

; ; ;] exploring this work: how can SFIT be extended to
fault injection testing of databases? This work involved exploring not only faults re-
lated to connection failures and service unavailability but also the impact of incorrect
(i.e., byzantine faults) answers from services, such as empty string or null.

This work resulted in not only extensions to the SFIT algorithm, through the
use of a new recursive byzantine fault injection algorithm, but also extensions of
the IDE plugin of FiLiBusTER to improve developer feedback and debugging of the
impact of injected faults. This master’s thesis not only improved on SFIT and p-SFIT
but also resulted in the extension of the application corpus with several examples
from Foodly of actual bugs that resulted in customer-affecting outages.

Impact. Since the development and evaluation of both SFIT and p-SFIT, Foodly
has asked application developers across all of their 500+ services to use FILIBUSTER
for testing their applications for resilience.

While the ultimate approach p-SFIT has not been fully adopted at Foodly yet for
technical reasons, at least six (6) different teams within Foodly have implemented
FiLiusTER tests in 2023 for their application using components taken from both
SFIT and p-SFIT: the testing process (from SFIT) and the integrated IDE plugin for
debugging failures (from p-SFIT.) More teams are expected to adopt FiLiBustEr for

Conclusion 161

fault injection testing in the coming year, and since writing this dissertation, at least
three additional teams have started writing FILIBUSTER tests.
To quote an anonymous developer at Foodly when first writing a FILIBUSTER test:

“My team really looks forward to the first filibuster test to work for this
service so that we could add more.”

Similarly, one developer stated this when examining one of the application
behaviors, provoked by FiLiBusTEr, where an actual bug was discovered:

“right yeah i think this is a solid callout from the FILIBUSTER test”

In fact, since the evaluations performed in this dissertation, additional bugs
that match the design the fictional applications presented in this dissertation have
been identified in services that have not yet employed fault injection testing. This
indicates the pressing concerns addressed by this dissertation and the need for more
widespread adoption of fault injection testing.

Finally, one of the engineers on the chaos engineering project at Netflix reached
out to the author of this dissertation personally! regarding the work in this disserta-
tion with the following:

“I applaud your view of getting developers to encode their expectations
iteratively — that is a branch of the space that I have not explored. |...] Thanks
for advancing the space, I'm excited to follow your work here in the future.”

12.3 Conclusion

For a proper conclusion to this dissertation, the reader is referred to the thesis
statement that opened this dissertation.

Identification of latent application bugs related to resilience in microservice applica-
tions, in development, and before deployment of code to production, is possible using
a developer-centric approach and can surface critical application bugs in large-scale,
industrial microservice applications.

As demonstrated by this dissertation, it is possible to identify latent application
resilience bugs, in development and before deployment of code to production, using

1Personal communication, 2022.

162 Conclusions

a developer-centric approach that surfaces critical application bugs in industrial
microservice applications.

The technique by which this is performed is called SFIT, a novel fault injection
technique that allows for exhaustive fault injection testing of microservice applica-
tions in development using an applications existing functional test suite. In order to
ensure that these functional tests are written with high enough fidelity to surface
deep application resilience bugs, a process named p-SFIT was designed that assists
developers in understanding complex failure scenarios and adapt their functional
tests accordingly. SFIT and p-SFIT provide a powerful combination, unprecedented
in existing academic research and industrial tooling and services, that can surface
deep, application resilience bugs.

Appendix A
Using p-SFIT: A Tutorial

“Faced with mysteries dark and vast, statements just seem vain at last, some
rise, some fall, some climb, to get to Terrapin.”

Garcia & Hunter, Terrapin Station

In this appendix, the open-source prototype implementation of p-SFIT, FILIBUSTER,
is used to demonstrate the use of p-SFIT on the example application presented
in Section 10 to capture its behavior under fault. For a review of this example
application, the reader is referred to both Chapter 10 and Figure(s) 10.1 and 10.2.

First, a functional test of the application is written using the p-SFIT testing
interface provided by FiLiBuster. This demonstrates how p-SFIT explicitly assists
the developer in writing a well-formed happy path test of the application before the
start of fault injection testing. Next, the authored functional test is used to perform
fault injection testing of the application. From here, a developer must specify using
p-SFIT how the application’s behavior changes under fault.

Finally, the application’s behavior is altered, and the p-SFIT testing process is
re-employed to demonstrate how it forces that the original assertions be modified to
account for the new behavior; the existing assertions are adjusted, and a specification
of new application behavior under fault is added to the functional test.

A.1 Single Adjustment Example

Consider the case where only a single possible pricing adjustment might be per-
formed by the example application presented in Chapter 10.

163

164 Using p-SFIT: A Tutorial

A.1.1 setupBlock: Perform Test Setup

First, the setupBlock is used to set up the test state before each test execution. In
this example, the cache and database states are reset and then primed by giving the
customer some starting funds to use for their purchase.

This block functions similarly to the @BeforeAll and @BeforeEach blocks and can
be combined. However, setupBlock allows subclasses to override test setup while
inheriting any of the other blocks: not possible with @BeforeAll or @BeforeEach.

@verride

public void setupBlock() {
// Reset cache state.
PurchaseWorkflow.resetCacheObjectForUser(consumerld);

// Reset database state.
PurchaseWorkflow.depositFundsToAccount(consumerId, 20000);
assertEquals(

20000,
10 PurchaseWorkflow.getAccountBalance(consumerId));

1 3}

1
2
3
4
5
6
7
8
9

A.1.2 stubBlock: Stub Downstream Dependencies

In the stubBlock, the FiLiuster-provided stubFor method is used, which wraps the
existing stubFor method provided by GrpcMock to be able to adjust stubs based on
fault injections, to stub the responses of downstream dependencies.

Here, every downstream dependency invoked by this test with responses is
stubbed. If one of these stubs is missed, FiLisuster will provide a specific warning
asking the stub to be written before proceeding.

Stubbing can be performed at a method level (as done with the getUser, getCart,
and updateCart RPCs) or for an individual RPC with specific arguments, as done
with the getAdjustment RPC.

1 @Override

2 public void stubBlock() {

3 stubFor(

4 UserServiceGrpc.getGetUserMethod(),

5 Hello.GetUserRequest.

6 newBuilder().

7 setSessionId(sessionld).build(),

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Single Adjustment Example

Hello.GetUserResponse.
newBuilder().
setUserId(consumerId).build());

stubFor(
CartServiceGrpc.getGetCartMethod(),
Hello.GetCartRequest.newBuilder ()
.setSessionlId(sessionId).build(),
Hello.GetCartResponse.newBuilder()
.setCartId(cartId)
.setTotal ("10000")
.setMerchantId(merchantId)
Lbuild());

stubFor(
PricingAdjustmentServiceGrpc
.getGetAdjustmentMethod(),
Hello.GetDiscountRequest
.newBuilder()
.setCode("FIRST-TIME") .build(),
Hello.GetDiscountResponse
.newBuilder()
.setPercent(”10").build());

stubFor(
CartServiceGrpc.getUpdateCartMethod(),
Hello.UpdateCartRequest.newBuilder()
.setCartld(cartld.toString())
.setDiscountAmount("10")
.build(),
Hello.UpdateCartResponse.newBuilder ()
.setCartId(cartId.toString())
.setTotal("9000")
.build());

165

166 Using p-SFIT: A Tutorial

A.1.3 executeTestBlock: Write the Functional Test

The test code is placed in the executeTestBlock. In this application, there is only a
call to the API gateway. The response is then set to the response variable, which is
provided by FiLisuster and automatically fed into the assertion methods.

1 @Override

2 public void executeTestBlock() {

3 APIServiceGrpc.APIServiceBlockingStub blockingStub =
4 APIServiceGrpc.newBlockingStub(API_CHANNEL);

5 Hello.PurchaseRequest request =

6 Hello.PurchaseRequest.newBuilder()

7 .setSessionId(sessionId)

8 .build();

9 response.set(blockingStub.makePurchase(request));

10 3}

A.1.4 assertTestBlock: Perform Test Assertions

In this block, assertions on the response of the RPC method invoked in the test block
are performed. As shown, it is asserted that the response is successful and that the
database writes are correct.

In this example, a helper method is parameterized so that the correct total can
be asserted in our failure case when the discount is not applied. Most likely, this
refactoring would be performed when adjusting the functional test to account for
the application’s failure behavior; this presentation is for brevity.

@verride
public void assertTestBlock() {
assertTestBlock(10000);

b

1
2
3
4
5
6 public void assertTestBlock(int total) {

7 Hello.PurchaseResponse response =

8 (Hello.PurchaseResponse) getResponse();
9

10 // Verify response.

11 assertNotNull(response);

12 assertTrue(response.getSuccess());

13 assertEquals(total, response.getTotal());

Single Adjustment Example

14

15 // Verify cache writes.

16 JSONObject cacheObject = PurchaseWorkflow

17 .getCacheObjectForUser (consumerld);

18 assertTrue(

19 generateExpectedCacheObject(

20 consumerId, cartld, total).similar(cacheObject));

21

22 // Verify database writes.

23 assertEquals (20000 - total,

24 PurchaseWorkflow.getAccountBalance(consumerId));
25 assertEquals(total,

26 PurchaseWorkflow.getAccountBalance(merchantId));
27}

167

A.1.5 assertStubBlock: Verify Stub Invocations

In this block, assertions on the invocation counts of the stubbed RPC methods
are written. As shown, the method verifyThat from FiLiBuster’s API is used as a
wrapper around the GrpcMock method of the same name to assert that the methods

getUser, getCart, getAdjustment, and updateCart is invoked precisely once.

@Override

public void assertStubBlock() {
verifyThat(UserServiceGrpc.getGetUserMethod(), 1);
verifyThat(CartServiceGrpc.getGetCartMethod(), 1);

Hello.GetDiscountRequest request =
Hello.GetDiscountRequest.newBuilder()
.setCode("FIRST-TIME")
Lbuild();

© ©® N o Ul R W N e

—_ =
= O

verifyThat(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
request,

1);

I S S oy
G = N

verifyThat(CartServiceGrpc.getUpdateCartMethod(), 1);

—_
[e)}

N
IS
et

168 Using p-SFIT: A Tutorial

A.1.6 teardownBlock: Perform Test Teardown

Similar to setupBlock, the teardownBlock can be used for performing test teardown.
Again, it doesn’t replace use @AfterEach or @AfterAll, but operates in a similar way:
they can be combined or overridden explicitly in sub-classes to change teardown
while inheriting other behavior.

Here, the state of the database is reset in the teardown to be a proper test citizen.

@Override

public void teardownBlock() {
// Reset cache state.
PurchaseWorkflow.resetCacheObjectForUser(consumerld);

// Reset database state.
PurchaseWorkflow.deleteAccount(consumerId);
PurchaseWorkflow.deleteAccount(merchantlId);

A.1.7 failureBlock: Application Failure Behavior

The failureBlock is executed at the start of the test, after setup and stubbing,
and provides a convenient location for placing the assertions on the application’s
behavior under fault.

Here, the entirety of the complted failureBlock is presented. However, as part
of the p-SFIT process, each injected fault would induce a test failure: from there, the
developer would write a single assertion in this section to adapt the test’s assertions
to the application’s behavior under fault. This would then trigger re-execution of
the test where all assertions would be re-checked before injection of the next fault,
which would require another addition to this section if that failure provoked a test
failure. This process was described in Section 11.1.

First, it is stated that both the getUser and getCart methods are hard dependencies:
they will throw an exception with a particular message on failure and abort the
purchasing process. In both cases, they result in a thrown exception with GRPC
status code UNAVAILABLE. This is a result of the first two fault injections: first, a fault
injected on the getUser method; second, a fault injected on the getCart method.

Next, to ensure the state of the system is consistent whenever a GRPC exception
with status code UNAVAILABLE is thrown, the state of the system is described. This
avoids situations where hard dependencies fail and result in thrown exceptions, but
the state of the system is different in both cases. Here, it is stated precisely that no
transfer of funds should have occurred, and that the updateCart method should

Single Adjustment Example 169

not have been invoked. It is also stated that invocation of other downstream RPCs
are OK because they are read-only: getCart and getAdjustment. This statement
is required for both the first and second fault injections, as it must be written to
proceed to the second fault injection scenario.

Next, it is stated that if the RPC to getAdjustment fails, the RPC will not be
invoked, with side effects, udpateCart and that the customer will pay total price.
Finally, it is stated that if the updateCart RPC fails, the customer will pay total price.
These are examples of soft dependencies.

1 @Override
2 public void failureBlock() {

3 // Any failure of the getUser call results in

4 // upstream receiving UNAVAILABLE exception.

5 assertFaultThrows(

6 UserServiceGrpc.getGetUserMethod(),

7 Status.Code.UNAVAILABLE,

8 "Purchase could not be completed at this time,
9 please retry the request:

10 cart could not be retrieved.”

11);

12

13 // Any failure of the getCart call results in

14 // upstream receiving UNAVAILABLE exception.

15 assertFaultThrows(

16 CartServiceGrpc.getGetCartMethod(),

17 Status.Code.UNAVAILABLE,

18 "Purchase could not be completed at this time,
19 please retry the request:

20 cart could not be retrieved.”

21);

22

23 // State what the state of the system on UNAVAILABLE.
24 assertOnException(Status.Code.UNAVAILABLE, () -> {
25 // Verify transaction did not occur.

26 assertEquals(

27 20000,

28 PurchaseWorkflowWithPricingAdjustmentService
29 .getAccountBalance(consumerld));

30 assertEquals(

31 Q,

170 Using p-SFIT: A Tutorial

32 PurchaseWorkflowWithPricingAdjustmentService
33 .getAccountBalance(merchantId));

34

35 // Notify the system some endpoints are read-only
36 // and therefore OK to skip

37 // when one returns a failure.

38 readOnlyRpc(CartServiceGrpc.getGetCartMethod());
39 readOnlyRpc(

40 PricingAdjustmentServiceGrpc

41 .getGetAdjustmentMethod());

42

43 // Ensure one did not update the cart.

44 sideEffectingRpc(

45 CartServiceGrpc.getUpdateCartMethod(), 0);
46 1

47

48 // Failure of the getAdjustment call results

49 // in no discount (and no call to updateCart.)

50 assertOnFault(

51 PricingAdjustmentServiceGrpc

52 .getGetAdjustmentMethod(),

53 Hello.GetDiscountRequest.newBuilder ()

54 .setCode("FIRST-TIME")

55 .build(),

56 O —>{

57 assertTestBlock(10000);

58 sideEffectingRpc(CartServiceGrpc

59 .getUpdateCartMethod(), 0);

60 }

61);

62

63 // Failure of the updateCart call results

64 // in no discount.

65 assertOnFault(

66 CartServiceGrpc.getUpdateCartMethod(),

67 () -> { assertTestBlock(10000); }

68);

69

Multiple Adjustment Example 171

A.2 Multiple Adjustment Example

To demonstrate how FiLiBusTER supports encoding the application’s behavior under
fault when multiple faults are injected at the same time, a few small modifications to
our application. Instead of only seeing if the customer is eligible for a single pricing
adjustment, the application should attempt to look up discounts using multiple
discount codes, and depending on which RPCs succeed, apply the greatest discount
value. Therefore, the amount the customer is charged is now dependent on which
RPCs succeed.

A.2.1 Updating the Happy Path Test

First, it is necessary to add the new stubs for the additional calls to look up different
discount codes in the stubBlock.

stubFor(PricingAdjustmentServiceGrpc
.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder ()
.setCode("FIRST-TIME")
.build(),
Hello.GetDiscountResponse.newBuilder ()
.setPercent("10")
.build());

O ©® N Ul R W N e

=
(=]

stubFor(PricingAdjustmentServiceGrpc
.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder()
.setCode ("RETURNING")
Lbuild(),
Hello.GetDiscountResponse.newBuilder()
.setPercent("5")
.build());

e e e e e e e e
O 0 N N Uk W N =

stubFor(PricingAdjustmentServiceGrpc
.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder ()
.setCode ("DAILY")
.build(),
Hello.GetDiscountResponse.newBuilder()
.setPercent("1")

N N NN NN
g k& W N = O

172 Using p-SFIT: A Tutorial

26 .build());
27
28 stubFor(CartServiceGrpc

29 .getUpdateCartMethod(),

30 Hello.UpdateCartRequest.newBuilder ()
31 .setCartId(cartId.toString())

32 .setDiscountAmount("10") .build(),
33 Hello.UpdateCartResponse.newBuilder ()
34 .setCartId(cartId.toString())

35 .setTotal ("9000") .build());

36
37 stubFor(CartServiceGrpc.getUpdateCartMethod(),

38 Hello.UpdateCartRequest.newBuilder ()

39 .setCartId(cartlId.toString())

40 .setDiscountAmount("5").build(),

41 Hello.UpdateCartResponse.newBuilder ()
42 .setCartId(cartId.toString())

43 .setTotal ("9500").build());

44
45 stubFor(CartServiceGrpc.getUpdateCartMethod(),

46 Hello.UpdateCartRequest.newBuilder ()

47 .setCartId(cartId.toString())

48 .setDiscountAmount("1").build(),

49 Hello.UpdateCartResponse.newBuilder ()
50 .setCartId(cartlId.toString())

51 .setTotal("9900") .build());

Next, the expected invocation counts for each stub in the assertStubBlock must
be updated, otherwise FiLisuster will not proceed past the initial, reference execu-
tion.

1 for (Map.Entry<String, String> discountCode :

2 PurchaseWorkflow.getDiscountCodes()) {

3 Hello.GetDiscountRequest request =

4 Hello.GetDiscountRequest.newBuilder ()

5 .setCode(discountCode.getKey()) .build();
6

7

8

verifyThat(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),

10

Multiple Adjustment Example 173

request, 1);

A.2.2 Updating the Application’s Failure Behavior

In the failureBlock, it is necessary to start considering how these faults can impact
the application in isolation. Here, it is necessary to state that if the 10% discount is
not applied, the 5% will be; if either the 5% or 1% discount fails, the 10% discount
will be applied.

O 0 N O Gk W N -

e e e T e T
O = W N = O

// If they don't get 10% discount they will get 5%.
assertOnFault(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder ()
.setCode("FIRST-TIME")
.build(),
() -> { assertTestBlock(9500); }

);

// If either the 5% or 1% fail or succeed,

// the 10% will be applied.

assertOnFault(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
this::assertTestBlock

);

Next, it is necessary to start thinking about compositions of faults. For example,

what happens if both the 10% and 5% requests fail? Then, the user will get a 1%
discount.

© N o Ul R W N e

// What happens if the 10% and 5% fail together? 1%.
CompositeFaultSpecification firstTwoDiscounts =
new CompositeFaultSpecification.Builder()

.faultOnRequest(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder ()

.setCode("FIRST-TIME").build())

.faultOnRequest(

PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),

174 Using p-SFIT: A Tutorial

10 Hello.GetDiscountRequest.newBuilder ()
11 .setCode ("RETURNING") .build())
12 .build();

13 assertOnFault(firstTwoDiscounts, () -> { assertTestBlock(9900); });

This must then be repeated for each composition of failures for all possible
discount codes. Even the combination where all three fail. In each of these cases,
the test cannot determine the code’s outcome when the failures occur.

// What happens if all three fail?
CompositeFaultSpecification allDiscounts =
new CompositeFaultSpecification.Builder()

.faultOnRequest(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder()

.setCode("FIRST-TIME") .build())

.faultOnRequest(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder ()

.setCode ("RETURNING") .build())

.faultOnRequest(
PricingAdjustmentServiceGrpc.getGetAdjustmentMethod(),
Hello.GetDiscountRequest.newBuilder()

.setCode ("DAILY").build())
.build();
assertOnFault(allDiscounts, () -> { assertTestBlock(10000); });

O 0 N O O Bk W N -

S e e e e
N O O ok W N = O

From here, the developer will have to consider what happens when the first
two discount code getAdjustment RPCs fail in combination with the updateCart call,
where no discount will be applied because the cart cannot be updated. This is not
included here for brevity.

As demonstrated, p-SFIT can surface and provoke the developer into think-
ing about failure scenarios they may not have imagined: the first two discount
lookups fail, the user only gets a 1% discount, but because the cart could not
be updated, they end up without a discount.

Adding Another Soft Dependency 175

A.3 Adding Another Soft Dependency

Let’s assume that one may want to add one more piece of functionality to our
application where an email is sent to the user after purchase. This will be done with
a new RPC on the cart service, notifyOrder.

As one does not want to abort the entire purchasing process if they cannot
send the email, this is another example of a soft dependency that the user will not
immediately see the effect of (or not even be aware that it should have happened.)

First, it is necessary to update both the stubBlock and assertStubBlocks to stub
and verify the invocation of the stub. Next, it is necessary to update the failureBlock
to indicate that when this RPC fails, it did not affect the outcome of the test (other
than the stub not being invoked.)

1 assertFaultHasNoImpact(CartServiceGrpc.getNotifyOrderMethod());

Finally, is it required to write assertions to capture the failure of the notifyOrder
RPC that sends the email with all possible combinations of failures of the getAdjustment
RPC calls?

No, compositional reasoning will infer automatically, and check with test
execution, that executions where some combination of getAdjustment RPCs
fail with notifyOrder RPC act the same way as invocations where the email
can be sent.

A4 Takeaways

As demonstrated, p-SFIT’s structured test interface not only assists application
developers in writing better happy path functional tests for their microservice
applications but also enforces that they author those tests in such a way that can be
used to identify bugs related to a microservice application’s failure handling code.
Instead of relying on the developer to understand what the possible impacts of
a fault are, p-SFIT prompts them when faults are injected to ensure that the effects
of that fault are explicitly encoded, thereby avoiding situations where developers
ignore the impact of failures that seemingly do not affect their application.
Whenever possible, this structured way of writing tests also enables compo-
sitional reasoning, preventing developers from writing individual test cases and
assertions for each failure scenario that combines already observed failures. Only
when the system cannot determine the system’s behavior or when an existing as-
sumption does not hold is the developer required to specify the behavior manually.

Appendix B
Availability

All contributions of this dissertation are available as open source and licensed
under the Apache 2 license. These can be both found on GitHub as part of the
filibuster-testing organization [Fila] and at the following individual DOIs, part

of the main FiLiBusTer reproduction package [I:
e the FiLBUSTER corpus reference set |], used to construct the corpus;
e the FiLIBUSTER corpus | 1;
e the FiLiBuster Python Implementation [IE
e the FiLiBusTER Java Implementation | 1;
e the FiLiBuster Intelli] IDE plugin []; and
e the FiLiBusTErR implementation for OpenTelemetry |].

Additionally, the FiLisuster plugin for Intelli] can be found on the JetBrains
marketplace [Filb].

177

List of Algorithms

=W N -

SFIT Algorithm
SFIT Algorithm
SFIT Algorithm
SFIT Algorithm

:Search

: Scheduling New Tests
: Encapsulated Service Reduction

: Search with ESR

179

List of Figures

3.1
3.2

4.1

51

52

53

54

6.1

7.1
7.2

10.1
10.2

11.1

11.2

Audible application with a description of the audiobook retrieval process. 27
Industry examples in the microservice application corpus. 30

Cinema examples in the microservice application corpus. 39

RPC signature alone cannot distinguish between the RPCs issued on lines
3 and 4; call stack or invocation count must be combined with signature. 48

Signature combined with invocation count insufficient in distinguishing
27d jteration of loop from 1% invocation of failure handler; signature
combined with call stack insufficient in distinguishing loop iterations. . . 50

RPC signature, when extended with invocation count and call stack, is
insufficient when different incoming RPC requests trigger RPC invocation. 52

Scheduling nondeterminism can permute the assignment of identifiers.
In this case, A’|;, can refer to the RPC invocation from either the 1 or
20 Joop teration. e 54

SFIT’s fault injection predicates are used to update a test to capture an
application’s behavior under fault. Yellow indicates added lines during
SFIT Process. v o v v v i it 71

Architecture of Python FiLiBusTer o oL 81
Percentage of executions with deterministic assignment for two threads. 86

Purchase Application Structure with FiLiBusTer Instrumentation 118
Purchase Application Workflow with Graceful Degradation 119

FiLisuster Intelli] plugin visualizes the intercepted RPC invocations and
their arguments and responses.o oL 136

FiLiBUsTER iteration where a StatusRuntimeException is injected in the
RPC invocation to UpdateCart. 137

List of Figures 181

11.3 Tteration, where FiLiBusTER injected a StatusRuntimeException with the
code UNAVAILABLE in GetUser. The test fails since the application behavior
is not defined for this fault. The FiLiBuster plugin shows recommenda-
tions regarding API methods that can be used to define the application
behavior. L 139
11.4 Popup that appears when one of the recommendations is clicked. The
popup shows the documentation page of the respective method in Firi-
BUSTER'S API
11.5 Testing procedure for p-SFIT. 141

List of Tables

7.1 Results demonstrating all techniques must be combined for correct iden-
tification. L 83
7.2 Python FiLiBustEr evaluated on the corpus. Includes the number of
generated tests with and without encapsulated service reduction; cover-
age before and after using Python FiLiBuster, overhead of encapsulated
service reduction algorithm, and overhead of test generation. 88

11.1 Table of p-SFIT-enabled FiLisuster assertion API and usage blocks for
each APImethod. 134

182

List of Definitions

O 0 NI O Gl = W N -

U i G
= W N = O

U U (Y
oo N O U

Definition (Hard Dependency) 26
Definition (Soft Dependency) 26
Definition (LatentBug) 29
Definition (Active Bug) 30
Definition (Graceful Degradation) 32
Definition (Soundness) oL 46
Definition (Completeness) 46
Definition (Correctness) 46
Definition (Signature) 47
Definition (Synchronous Invocation Signature) 50
Definition (Synchronous Distributed Execution Index) 53
Definition (Invocation Payload) 55
Definition (Asynchronous Invocation Signature) 56
Definition (Distributed ExecutionIndex) 56
Definition (Fault Configuration) 66
Definition (Concrete Test Execution) 67
Definition (Abstract Test Execution) 67
Definition (Service Encapsulation) 74

183

Bibliography

[AAE16a]

[AAE16b]

[Abd+23]

[ABHO6]

[Alv+16a]

[Alv+16b]

Nuha Alshuqayran, Nour Ali, and Roger Evans. “A systematic map-
ping study in microservice architecture”. In: 2016 IEEE 9th interna-
tional conference on service-oriented computing and applications (SOCA).
IEEE. 2016, pp. 44-51.

Nuha Alshuqayran, Nour Ali, and Roger Evans. “A Systematic Map-
ping Study in Microservice Architecture”. In: 2016 IEEE 9th Interna-
tional Conference on Service-Oriented Computing and Applications (SOCA).
2016, pp. 44-51. por: 10.1109/SOCA.2016.15.

Amr S Abdelfattah, Tomas Cerny, Jorge Yero Salazar, Austin Lehman,
Joshua Hunter, Ashley Bickham, and Davide Taibi. “End-to-End
Test Coverage Metrics in Microservice Systems: An Automated Ap-
proach”. In: European Conference on Service-Oriented and Cloud Comput-
ing. Springer. 2023, pp. 35-51.

Cyrille Artho, Armin Biere, and Shinichi Honiden. “Exhaustive Test-
ing of Exception Handlers with Enforcer”. In: Proceedings of the 5th
International Conference on Formal Methods for Components and Objects.
FMCO’06. Amsterdam, The Netherlands: Springer-Verlag, 2006, 26—46.
1sBN: 3540747915.

Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali
Basiri, and Lorin Hochstein. “Automating Failure Testing Research
at Internet Scale”. In: Proceedings of the Seventh ACM Symposium on
Cloud Computing. SoCC "16. Santa Clara, CA, USA: Association for
Computing Machinery, 2016, 17-28. 1sBn: 9781450345255. por: 10 .
1145/2987550 . 2987555. URL: https://doi.org/10.1145/2987550.
2987555.

Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali
Basiri, and Lorin Hochstein. “Automating Failure Testing Research
at Internet Scale”. In: Proceedings of the Seventh ACM Symposium on
Cloud Computing. SoCC "16. Santa Clara, CA, USA: Association for

185

https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555

186 Bibliography

[AMS13]

[ARH15a]

[ARHI15b]

[Ass23]

[Ass+24]

[Atc19]

[Aud]
[aut22]
[Avi+04]

Computing Machinery, 2016, 17-28. 1sBn: 9781450345255. por: 10 .
114572987550 . 2987555. URL: https://doi.org/10.1145/2987550.
2987555.

Sheeva Afshan, Phil McMinn, and Mark Stevenson. “Evolving Read-
able String Test Inputs Using a Natural Language Model to Reduce
Human Oracle Cost”. In: 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. 2013, pp. 352-361. por:
10.1109/ICST.2013.11.

Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. “Lineage-
Driven Fault Injection”. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’15. Mel-
bourne, Victoria, Australia: Association for Computing Machinery,
2015, 331-346. 1sBN: 9781450327589. por: 10.1145/2723372.2723711.
URL: https://doi.org/10.1145/2723372.2723711.

Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. “Lineage-
Driven Fault Injection”. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’15. Mel-
bourne, Victoria, Australia: Association for Computing Machinery,
2015, 331-346. 1sBN: 9781450327589. por: 10.1145/2723372.2723711.
URL: https://doi.org/10.1145/2723372.2723711.

Michael Assad. Service-Level Byzantine and Exception Fault Injection in
Databases within Microservice Applications. 2023.

Michael Assad, Christopher Meiklejohn, Heather Miller, and Stephan
Krusche. “Can My Microservice Tolerate an Unreliable Database?
Resilience Testing with Fault Injection and Visualization”. In: arXiv
preprint arXiv:2404.01886 (2024).

Lee Atchison. How Service Tiers Can Help to Avoid Microservices Dis-
asters. https://thenewstack.io/how-service-tiers-can-help-to-
avoid-microservices-disasters/. Accessed: 2023-07-21. 2019.

Audible. https://www.audible.com. Accessed: 2021-05-21. 2021.
Anonymized authors. “Suppressed title”. In: ID: 2. 2022.

A. Avizienis,].-C. Laprie, B. Randell, and C. Landwehr. “Basic con-
cepts and taxonomy of dependable and secure computing”. In: [EEE
Transactions on Dependable and Secure Computing 1.1 (2004), pp. 11-33.
DOL: 10.1109/TDSC. 2004 . 2.

https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1109/ICST.2013.11
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2723372.2723711
https://thenewstack.io/how-service-tiers-can-help-to-avoid-microservices-disasters/
https://thenewstack.io/how-service-tiers-can-help-to-avoid-microservices-disasters/
https://www.audible.com
https://doi.org/10.1109/TDSC.2004.2

[Bal+18]

[Bas+16]

[Bas+19a]

[Bas+19b]

[BC12a]

[BC12b]

[BC13]

[BHJ16]

Bibliography 187

Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A
Tamburri, and Theo Lynn. “Microservices migration patterns”. In:
Software: Practice and Experience 48.11 (2018), pp. 2019-2042.

Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke
Kosewski, Justin Reynolds, and Casey Rosenthal. “Chaos Engineer-
ing”. In: IEEE Software 33.3 (2016), pp. 35—41. por: 10.1109/MS.2016.
60.

Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. “Automat-
ing Chaos Experiments in Production”. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 2019, pp. 31-40. por: 10.1109/ICSE-SEIP.2019.
00012.

Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. “Automat-
ing chaos experiments in production”. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE. 2019, pp. 31-40.

Radu Banabic and George Candea. “Fast Black-Box Testing of System
Recovery Code”. In: Proceedings of the 7th ACM European Conference
on Computer Systems. EuroSys "12. Bern, Switzerland: Association
for Computing Machinery, 2012, 281-294. 1spn: 9781450312233. por:
10.1145/2168836.2168865. URL: https://doi.org/10.1145/2168836.
2168865.

Radu Banabic and George Candea. “Fast Black-Box Testing of System
Recovery Code”. In: Proceedings of the 7th ACM European Conference
on Computer Systems. EuroSys "12. Bern, Switzerland: Association
for Computing Machinery, 2012, 281-294. 1sBn: 9781450312233. por:
10.1145/2168836.2168865. URL: https://doi.org/10.1145/2168836.
2168865.

Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microser-
vices Architecture Enables DevOps: Migration to a Cloud-Native Ar-
chitecture”. In: IEEE Software 33.3 (2016), pp. 42-52. por: 10.1109/MS.
2016.64.

https://doi.org/10.1109/MS.2016.60
https://doi.org/10.1109/MS.2016.60
https://doi.org/10.1109/ICSE-SEIP.2019.00012
https://doi.org/10.1109/ICSE-SEIP.2019.00012
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64

188 Bibliography

[BST02a]

[BST02b]

[Bui|

[Cel20]

[Chaal]
[Chab]

[Chac]
[Chad]
[Che+23]

[Daw+96 |

[Deu94]
[Fid91]

[Fila]

Pete Broadwell, Naveen Sastry, and Jonathan Traupman. “FIG: A
prototype tool for online verification of recovery mechanisms”. In:
Workshop on Self-Healing, Adaptive and Self-Managed Systems. Citeseer.
2002.

Pete Broadwell, Naveen Sastry, and Jonathan Traupman. “FIG: A
prototype tool for online verification of recovery mechanisms”. In:
Workshop on Self-Healing, Adaptive and Self-Managed Systems. Citeseer.
2002.

Building Microservices in Python and Flask. https: //codeahoy . com/
2016/07 /10 /writing-microservices - in-python-using- flask.
Accessed: 2021-05-21. 2016.

Cesare Celozzi. Future-proofing: How DoorDash Transitioned from a Code
Monolith to a Microservice Architecture. https://doordash.engineering/
2020/12/02/how-doordash-transitioned-from-a-monolith-to-
microservices/. Accessed: 2023-07-21. 2020.

Chaos Blade. https://chaosblade.io. Accessed: 2022-06-05. 2022.

“Chaos Engineering Saved Your Netflix Extreme stress testing of
online platforms has become its own science”. In: IEEE Spectrum 58.3
(2021), pp. 4-10. 1ssN: 1939-9340. por: 10.1109/MSPEC. 2021.9370069.

Chaos Mesh. https://chaos-mesh.org. Accessed: 2022-06-05. 2022.
ChaosToolkit. https://chaostoolkit.org. Accessed: 2022-06-05. 2022.

Yinfang Chen, Xudong Sun, Suman Nath, Ze Yang, and Tianyin Xu.
“{Push-Button} Reliability Testing for {Cloud-Backed} Applications
with Rainmaker”. In: 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 2023, pp. 1701-1716.

S. Dawson, F. Jahanian, T. Mitton, and Teck-Lee Tung. “Testing of
Fault-Tolerant and Real-Time Distributed Systems via Protocol Fault
Injection”. In: Proceedings of the The Twenty-Sixth Annual International
Symposium on Fault-Tolerant Computing (FTCS "96). FICS "96. USA:
IEEE Computer Society, 1996, p. 404. 1sBN: 0818672617.

Peter Deutsch. “The eight fallacies of distributed computing”. In: URL:
http:/ /today. java. net/jag/Fallacies. html (1994).

C. Fidge. “Logical time in distributed computing systems”. In: Com-
puter 24.8 (1991), pp. 28-33. por: 10.1109/2.84874.

Filibuster. http://filibuster.cloud. Accessed: 2021-09-07. 2021.

https://codeahoy.com/2016/07/10/writing-microservices-in-python-using-flask
https://codeahoy.com/2016/07/10/writing-microservices-in-python-using-flask
https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/
https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/
https://doordash.engineering/2020/12/02/how-doordash-transitioned-from-a-monolith-to-microservices/
https://chaosblade.io
https://doi.org/10.1109/MSPEC.2021.9370069
https://chaos-mesh.org
https://chaostoolkit.org
https://doi.org/10.1109/2.84874
http://filibuster.cloud

[Filb]

[Gan+19]

[GKS05]

[GY11]

Bibliography 189

Filibuster (for MacOS, Linux). https: //plugins . jetbrains . com/
plugin/21057-filibuster-for-macos-1linux-. Accessed: 2024-04-27.
2024.

Yu Gan, Yanqgi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. “ An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems”. In:
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 2019, pp. 3—
18.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed
automated random testing”. In: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation. 2005,
pp- 213-223.

Grafana. https://grafana.io. Accessed: 2024-05-01. 2024.
Gremlin. http://www.gremlin.com. Accessed: 2021-05-21. 2021.
Gremlin. http://www.gremlin.com. Accessed: 2021-05-21. 2021.

Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. “FATE and DESTINI: A Frame-
work for Cloud Recovery Testing”. In: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation. NSDI'11.
Boston, MA: USENIX Association, 2011, 238-252.

Rachid Guerraoui and Maysam Yabandeh. “Model Checking a Net-
worked System Without the Network”. In: 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11). Boston,
MA: USENIX Association, Mar. 2011. urL: https://www.usenix.org/
conference/nsdil1/model-checking-networked-system-without-
network.

Harness: The Modern Software Delivery Platform. https://harness. io.
Accessed: 2024-05-01. 2024.

Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K.
Reiter, and Vyas Sekar. “Gremlin: Systematic Resilience Testing of Mi-
croservices”. In: 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). 2016, pp. 57-66. por: 10.1109/ICDCS .
2016.11.

https://plugins.jetbrains.com/plugin/21057-filibuster-for-macos-linux-
https://plugins.jetbrains.com/plugin/21057-filibuster-for-macos-linux-
https://grafana.io
http://www.gremlin.com
http://www.gremlin.com
https://www.usenix.org/conference/nsdi11/model-checking-networked-system-without-network
https://www.usenix.org/conference/nsdi11/model-checking-networked-system-without-network
https://www.usenix.org/conference/nsdi11/model-checking-networked-system-without-network
https://harness.io
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1109/ICDCS.2016.11

190 Bibliography

[Heo+16b] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K.
Reiter, and Vyas Sekar. “Gremlin: Systematic Resilience Testing of Mi-
croservices”. In: 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS) (2016), pp. 57-66. por: 10.1109/ICDCS.
2016.11.

[Hig20] High Scalability Blog. http://highscalability.com/blog/2020/
4/8/one-team-at-uber-is-moving-from-microservices-to-
macroservic.html. Accessed: 2023-07-21. 2020.

[Hil23] Jeremy Hillpot. 4 Microservices Examples: Amazon, Netflix, Uber, and
Etsy. https://blog.dreamfactory. com/microservices-examples/.
Accessed: 2023-07-21. 2023.

[Hip| Online Boutique. https://github. com/GoogleCloudPlatform/microservices-
demo. Accessed: 2021-05-21. 2021.

[HSS23] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. “Lifting the veil on
Meta’s microservice architecture: Analyses of topology and request
workflows”. In: 2023 USENIX Annual Technical Conference (USENIX
ATC 23). Boston, MA: USENIX Association, July 2023, pp. 419-432.
ISBN: 978-1-939133-35-9. URL: https://www.usenix.org/conference/
atc23/presentation/huye.

[Jae] Jaeger. https://jaegertracing.io. Accessed: 2024-05-01. 2024.

[Jam+18a] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonga, James Lewis, and
Stefan Tilkov. “Microservices: The journey so far and challenges
ahead”. In: IEEE Software 35.3 (2018), pp. 24-35.

[Jam+18b] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonga, James Lewis, and
Stefan Tilkov. “Microservices: The journey so far and challenges
ahead”. In: IEEE Software 35.3 (2018), pp. 24-35.

[JC18] Jay Judkowitz and Mark Carter. SRE fundamentals: SLIs, SLAs and
SLOs. https://cloud.google.com/blog/products/devops-sre/sre-
fundamentals-slis-slas-and-slos. Accessed: 2023-07-21. 2018.

[JC19] Christina Terese Joseph and K Chandrasekaran. “Straddling the crevasse:
A review of microservice software architecture foundations and re-
cent advancements”. In: Software: Practice and Experience 49.10 (2019),
pp. 1448-1484.

https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1109/ICDCS.2016.11
http://highscalability.com/blog/2020/4/8/one-team-at-uber-is-moving-from-microservices-to-macroservic.html
http://highscalability.com/blog/2020/4/8/one-team-at-uber-is-moving-from-microservices-to-macroservic.html
http://highscalability.com/blog/2020/4/8/one-team-at-uber-is-moving-from-microservices-to-macroservic.html
https://blog.dreamfactory.com/microservices-examples/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://jaegertracing.io
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-slis-slas-and-slos
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-slis-slas-and-slos

[1D10]

[JGS11]

[JM09]

[Jos+09]

[Jos+13]

[Kil+07]

[KKA95]

Bibliography 191

Lukasz Juszczyk and Schahram Dustdar. “Programmable Fault Injec-
tion Testbeds for Complex SOA”. In: Service-Oriented Computing. Ed.
by Paul P. Maglio, Mathias Weske, Jian Yang, and Marcelo Fantinato.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 411-425.
1sBN: 978-3-642-17358-5.

Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. “PREFAIL: A
Programmable Tool for Multiple-Failure Injection”. In: Proceedings of
the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications. OOPSLA "11. Portland, Oregon,
USA: Association for Computing Machinery, 2011, 171-188. 1sBN:
9781450309400. por: 10.1145/2048066 . 2048082. URL: https://doi.
org/10.1145/2048066.2048082.

Ranjit Jhala and Rupak Majumdar. “Software Model Checking”. In:
ACM Comput. Surv. 41.4 (2009). 1ssn: 0360-0300. por: 10.1145/1592434.
1592438. URL: https://doi.org/10.1145/1592434.1592438.

Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. “A
Randomized Dynamic Program Analysis Technique for Detecting
Real Deadlocks”. In: SIGPLAN Not. 44.6 (June 2009), 110-120. 1ssN:
0362-1340. por: 10.1145/1543135.1542489. urL: https://doi.org/10.
1145/1543135.1542489.

Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and
Nadia Papakonstantinou. “SETSUDO: Perturbation-Based Testing
Framework for Scalable Distributed Systems”. In: Proceedings of the
First ACM SIGOPS Conference on Timely Results in Operating Systems.
TRIOS "13. Farmington, Pennsylvania: Association for Computing
Machinery, 2013. 1seN: 9781450324632. por: 10.1145/2524211.2524217.
URL: https://doi.org/10.1145/2524211.2524217.

Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vah-
dat. “Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code”. In: 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI 07). Cambridge, MA: USENIX Asso-
ciation, Apr. 2007. urL: https://www.usenix.org/conference/nsdi-
07/1ife-death-and-critical - transition-finding-liveness -
bugs-systems-code.

G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. “FERRARI: a flexi-
ble software-based fault and error injection system”. In: IEEE Transac-
tions on Computers 44.2 (1995), pp. 248-260. por: 10.1109/12.364536.

https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1543135.1542489
https://doi.org/10.1145/1543135.1542489
https://doi.org/10.1145/1543135.1542489
https://doi.org/10.1145/2524211.2524217
https://doi.org/10.1145/2524211.2524217
https://www.usenix.org/conference/nsdi-07/life-death-and-critical-transition-finding-liveness-bugs-systems-code
https://www.usenix.org/conference/nsdi-07/life-death-and-critical-transition-finding-liveness-bugs-systems-code
https://www.usenix.org/conference/nsdi-07/life-death-and-critical-transition-finding-liveness-bugs-systems-code
https://doi.org/10.1109/12.364536

192 Bibliography

[Kub23] Kubernetes. Configure Liveness, Readiness and Startup Probes. https://
kubernetes.io/docs/tasks/configure-pod-container/configure-
liveness-readiness-startup-probes/. Accessed: 2023-07-21. 2023.

[Lee+14] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.
Lukman, and Haryadi S. Gunawi. “SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems”. In:
Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. OSDI'14. Broomfield, CO: USENIX Association,
2014, 399—414. 1sBN: 9781931971164.

[Lei+20] Leonardo Leite, Fabio Kon, Gustavo Pinto, and Paulo Meirelles. “Build-
ing a theory of software teams organization in a continuous delivery
context”. In: 2020 IEEE /ACM 42nd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE. 2020,
pp- 296-297.

[LF14] James Lewis and Martin Fowler. “Microservices: a definition of this
new architectural term”. In: MartinFowler. com 25 (2014), pp. 14-26.

[Li+21a] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang,
Zhihao Shan, Jinfeng Shen, and Muhammad Ali Babar. “Understand-
ing and addressing quality attributes of microservices architecture: A
Systematic literature review”. In: Information and Software Technology

131 (2021), p. 106449.

[Li+21b] Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang,
Zhihao Shan, Jinfeng Shen, and Muhammad Ali Babar. “Understand-
ing and addressing quality attributes of microservices architecture: A
Systematic literature review”. In: Information and Software Technology
131 (2021), p. 106449. 1ssn: 0950-5849. por: https: //doi.org/10.
1016/j.infsof.2020.106449. URL: https://www.sciencedirect.com/
science/article/pii/S0950584920301993.

[Lig] LightStep. https://lightstep.com. Accessed: 2023-09-30. 2024.

[Lin]| LinkedOut: A Request-Level Failure Injection Framework. https://engineering.
linkedin . com/blog /2018 / @5/ linkedout -- a - request - level -
failure-injection-framework. Accessed: 2021-05-21. 2018.

[Lit] Litmus. https://litmuschaos.io. Accessed: 2022-06-05. 2022.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106449
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://lightstep.com
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
https://litmuschaos.io

[Luk+19]

[MALH21]

[Mat88]

[MC09a]

[MCO09b]

[McC15]

[Mei+21a]

[Mei+21b]

Bibliography 193

Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto,
Daniar H. Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,
Feng Ye, Tanakorn Leesatapornwongsa, Aarti Gupta, Shan Lu, and
Haryadi S. Gunawi. “FlyMC: Highly Scalable Testing of Complex
Interleavings in Distributed Systems”. In: Proceedings of the Fourteenth
EuroSys Conference 2019. EuroSys "19. Dresden, Germany: Association
tor Computing Machinery, 2019. 1sBN: 9781450362818. por: 10.1145/
3302424.3303986. URL: https://doi.org/10.1145/3302424.3303986.

Hamdy Michael Ayas, Philipp Leitner, and Regina Hebig. “The Migra-
tion Journey Towards Microservices”. In: International Conference on
Product-Focused Software Process Improvement. Springer. 2021, pp. 20—
35.

Friedemann Mattern. “Virtual Time and Global States of Distributed
Systems”. In: PARALLEL AND DISTRIBUTED ALGORITHMS. North-
Holland, 1988, pp. 215-226.

Paul D. Marinescu and George Candea. “LFI: A practical and general
library-level fault injector”. In: 2009 IEEE/IFIP International Conference
on Dependable Systems Networks. 2009, pp. 379-388. por: 10.1109/DSN.
2009.5270313.

Paul D. Marinescu and George Candea. “LFI: A practical and general
library-level fault injector”. In: 2009 IEEE/IFIP International Conference
on Dependable Systems Networks. 2009, pp. 379-388. por: 10.1109/DSN.
2009.5270313.

Caitie McCaffrey. “The Verification of a Distributed System: A Practi-
tioner’s Guide to Increasing Confidence in System Correctness”. In:
Queue 13.9 (2015), 150-160. 1ssn: 1542-7730. por: 10.1145/2857274.
2889274. URL: https://doi.org/10.1145/2857274.2889274.

Christopher S Meiklejohn, Andrea Estrada, Yiwen Song, Heather
Miller, and Rohan Padhye. “Service-Level Fault Injection Testing”. In:
Proceedings of the ACM Symposium on Cloud Computing. 2021, pp. 388-
402.

Christopher S Meiklejohn, Andrea Estrada, Yiwen Song, Heather
Miller, and Rohan Padhye. “Service-level fault injection testing”. In:
Proceedings of the ACM Symposium on Cloud Computing. 2021, pp. 388—
402.

https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1145/2857274.2889274
https://doi.org/10.1145/2857274.2889274
https://doi.org/10.1145/2857274.2889274

194 Bibliography

[Mei+22] Christopher Meiklejohn, Lydia Stark, Cesare Celozzi, Matt Ranney,
and Heather Miller. “Method Overloading the Circuit”. In: Proceedings
of the 13th Symposium on Cloud Computing. SoCC "22. San Francisco,
California: Association for Computing Machinery, 2022, 273-288.
1sBN: 9781450394147. por: 10 . 1145/ 3542929 . 3563466. URL: https:
//doi.org/10.1145/3542929.3563466.

[Mei23a| Christopher Meiklejohn. Filibuster 2.0: Byzantine Fault Injection with
Arbitrary Faults. https://christophermeiklejohn.com/filibuster/
2023/09/07/filibuster-2.0-byzantine-arbitrary.html. Accessed:
2024-05-01. 2023.

[Mei23b] Christopher Meiklejohn. Filibuster 2.0: Byzantine Fault Injection with
Hardcoded Fault Values. https://christophermeiklejohn.com/filibuster/
2023/09/09/filibuster-2.0-byzantine-hardcoded.html. Accessed:
2024-05-01. 2023.

[Mei23c] Christopher Meiklejohn. Filibuster 2.0: Computing API coverage of a Mi-
croservice Application. https://christophermeiklejohn.com/filibuster/
2023/09/06/filibuster-2.0-API-coverage.html. Accessed: 2024-
05-01. 2023.

[Mei23d] Christopher Meiklejohn. Filibuster 2.0: Healthcheck your Functional
Test Suite with API Coverage. https://christophermeiklejohn.com/
filibuster/2023/09/02/filibuster-2.0-01-healthcheck. html.
Accessed: 2024-05-01. 2023.

[Mei23e] Christopher Meiklejohn. Filibuster 2.0: Microservice Linter, Multiple
Invocations to the Same RPC Method. https://christophermeiklejohn.
com/ filibuster /2023/09/05/filibuster-2.0-multiple . html.
Accessed: 2024-05-01. 2023.

[Mei23f] Christopher Meiklejohn. Filibuster 2.0: Microservice Linter, Redundant
RPCs. https://christophermeiklejohn.com/filibuster/2023/09/
03/filibuster-2.0-redundant.html. Accessed: 2024-05-01. 2023.

[Mei23g]| Christopher Meiklejohn. Filibuster 2.0: Microservice Linter, Requests
become part of a Response. https : / /christophermeiklejohn . com/
filibuster/2023/09/04/filibuster-2.0-request-response.html.
Accessed: 2024-05-01. 2023.

[Mei23h] Christopher Meiklejohn. Filibuster 2.0: Redis Fault Injection. https://
christophermeiklejohn.com/filibuster/2023/09/01/filibuster-
2.0-redis-fault-injection.html. Accessed: 2024-05-01. 2023.

https://doi.org/10.1145/3542929.3563466
https://doi.org/10.1145/3542929.3563466
https://doi.org/10.1145/3542929.3563466
https://christophermeiklejohn.com/filibuster/2023/09/07/filibuster-2.0-byzantine-arbitrary.html
https://christophermeiklejohn.com/filibuster/2023/09/07/filibuster-2.0-byzantine-arbitrary.html
https://christophermeiklejohn.com/filibuster/2023/09/09/filibuster-2.0-byzantine-hardcoded.html
https://christophermeiklejohn.com/filibuster/2023/09/09/filibuster-2.0-byzantine-hardcoded.html
https://christophermeiklejohn.com/filibuster/2023/09/06/filibuster-2.0-API-coverage.html
https://christophermeiklejohn.com/filibuster/2023/09/06/filibuster-2.0-API-coverage.html
https://christophermeiklejohn.com/filibuster/2023/09/02/filibuster-2.0-01-healthcheck.html
https://christophermeiklejohn.com/filibuster/2023/09/02/filibuster-2.0-01-healthcheck.html
https://christophermeiklejohn.com/filibuster/2023/09/05/filibuster-2.0-multiple.html
https://christophermeiklejohn.com/filibuster/2023/09/05/filibuster-2.0-multiple.html
https://christophermeiklejohn.com/filibuster/2023/09/03/filibuster-2.0-redundant.html
https://christophermeiklejohn.com/filibuster/2023/09/03/filibuster-2.0-redundant.html
https://christophermeiklejohn.com/filibuster/2023/09/04/filibuster-2.0-request-response.html
https://christophermeiklejohn.com/filibuster/2023/09/04/filibuster-2.0-request-response.html
https://christophermeiklejohn.com/filibuster/2023/09/01/filibuster-2.0-redis-fault-injection.html
https://christophermeiklejohn.com/filibuster/2023/09/01/filibuster-2.0-redis-fault-injection.html
https://christophermeiklejohn.com/filibuster/2023/09/01/filibuster-2.0-redis-fault-injection.html

[Mei24a]
[Mei24b]
[Mei24c]
[Mei24d]
[Mei24e]
[Mei24f]
[Mei24g]

[Men+20]

[Mic23a]

[Mic23b]

[MRF18]

[MW18]

Bibliography 195

Christopher Meiklejohn. Filibuster. 2024. por: 10.17605/0SF .10/G8T4P.
URL: osf.i0/g8t4p.

Christopher Meiklejohn. Filibuster: Application Corpus. 2024. por: 10.
17605/0SF.I0/ZVYJN. URL: osf.io/zvyjn.

Christopher Meiklejohn. Filibuster: Corpus References. 2024. por: 10 .
17605/0SF.I10/BJ52A. URL: osf.i0/bj52a.

Christopher Meiklejohn. Filibuster: Intelli] Plugin for Java. 2024. por:
10.17605/0SF.10/28B3K. URL: osf.10/28b3k.

Christopher Meiklejohn. Filibuster: Java Implementation. 2024. por: 10.
17605/0SF.I0/7EWYZ. URL: osf.1i0/7ewyz.

Christopher Meiklejohn. Filibuster: OpenTelemetry Implementation for
Java. 2024. por: 10.17605/0SF.I0/4F2AR. URL: osf.io/4f2ar.

Christopher Meiklejohn. Filibuster: Python Implementation. 2024. por:
10.17605/0SF.I0/EAH93. URL: osf.i0/eah93.

Nabor C. Mendonca, Carlos M. Aderaldo, Javier Camara, and David
Garlan. “Model-Based Analysis of Microservice Resiliency Patterns”.
In: 2020 IEEE International Conference on Software Architecture (ICSA).
2020, pp. 114-124. por: 10.1109/ICSA47634.2020.00019.

Michal Kaczmarski. Which company is winning the restaurant food deliv-
ery war? https://secondmeasure.com/datapoints/food-delivery-
services - grubhub - uber - eats - doordash - postmates/. Accessed:
2023-11-26. 2023.

Microsoft. Bulkhead pattern. https: //learn.microsoft . com/en-
us/azure/architecture/patterns/bulkhead. Accessed: 2023-07-21.
2023.

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. “Pivot Tracing:
Dynamic Causal Monitoring for Distributed Systems”. In: ACM Trans.
Comput. Syst. 35.4 (2018). 1ssn: 0734-2071. por: 10.1145/3208104. URL:
https://doi.org/10.1145/3208104.

Fabrizio Montesi and Janine Weber. “From the Decorator Pattern to
Circuit Breakers in Microservices”. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. SAC "18. Pau, France: Associa-
tion for Computing Machinery, 2018, 1733-1735. 1sen: 9781450351911.
por: 10.1145/3167132.3167427. URL: https://doi.org/10.1145/
3167132.3167427.

https://doi.org/10.17605/OSF.IO/G8T4P
osf.io/g8t4p
https://doi.org/10.17605/OSF.IO/ZVYJN
https://doi.org/10.17605/OSF.IO/ZVYJN
osf.io/zvyjn
https://doi.org/10.17605/OSF.IO/BJ52A
https://doi.org/10.17605/OSF.IO/BJ52A
osf.io/bj52a
https://doi.org/10.17605/OSF.IO/28B3K
osf.io/28b3k
https://doi.org/10.17605/OSF.IO/7EWYZ
https://doi.org/10.17605/OSF.IO/7EWYZ
osf.io/7ewyz
https://doi.org/10.17605/OSF.IO/4F2AR
osf.io/4f2ar
https://doi.org/10.17605/OSF.IO/EAH93
osf.io/eah93
https://doi.org/10.1109/ICSA47634.2020.00019
https://secondmeasure.com/datapoints/food-delivery-services-grubhub-uber-eats-doordash-postmates/
https://secondmeasure.com/datapoints/food-delivery-services-grubhub-uber-eats-doordash-postmates/
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://doi.org/10.1145/3208104
https://doi.org/10.1145/3208104
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427
https://doi.org/10.1145/3167132.3167427

196 Bibliography

[Ner+20]

[Neta]

[Netb |
[Netc]

[Netd]
[Nete]

[Norl7]

[OEC16]

[PP22]

Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi.
“Design principles, architectural smells and refactorings for microser-
vices: a multivocal review”. In: SICS Software-Intensive Cyber-Physical
Systems 35.1 (2020), pp. 3-15. por: 10.1007/s00450-019-00407-8. URL:
https://doi.org/10.1007/s00450-019-00407-8.

FIT: Failure Injection Testing. https://netflixtechblog.com/fit-
failure-injection- testing - 35d8e2a9bb2. Accessed: 2022-06-05.
2014.

GitHub: Netflix /chaosmonkey. https://github.com/Netflix/chaosmonkey.
Accessed: 2022-06-05. 2022.

GitHub: Netflix /| SimianArmy. https://github.com/Netflix/SimianArmy.
Accessed: 2022-06-05. 2022.

Netflix. https://www.netflix.com. Accessed: 2021-05-21. 2021.

The Netflix Simian Army - The Netflix Technology Blog.https://netflixtechblog.
com/the-netflix-simian-army-16e57fbab116. Accessed: 2022-06-05.
2011.

Nora Jones. AWS re:Invent 2017: Performing Chaos at Netflix Scale (DEV334).
https://www.youtube.com/watch?v=LaKGx0dAUlo. Accessed: 2022-
06-05. 2017.

Rory O’Connor, Peter Elger, and Paul M Clarke. “Exploring the im-
pact of situational context—A case study of a software development
process for a microservices architecture”. In: 2016 IEEE/ACM Interna-
tional Conference on Software and System Processes (ICSSP). IEEE. 2016,
pp- 6-10.

OpenTelemetry. https: //opentelemetry . io. Accessed: 2022-06-05.
2022.

Claus Pahl and Pooyan Jamshidi. “Microservices: a systematic map-
ping study.” In: CLOSER (1) (2016), pp. 137-146.

Dewmini Premarathna and Asanka Pathirana. “Theoretical frame-
work to address the challenges in Microservice Architecture”. In:
2021 International Research Conference on Smart Computing and Systems
Engineering (SCSE). Vol. 4. IEEE. 2021, pp. 195-202.

Aashay Palliwar and Srinivas Pinisetty. “Using Gossip Enabled Dis-
tributed Circuit Breaking for Improving Resiliency of Distributed
Systems”. In: 2022 IEEE 19th International Conference on Software Archi-
tecture (ICSA). 2022, pp. 13-23. por: 10.1109/ICSA53651.2022.00010.

https://doi.org/10.1007/s00450-019-00407-8
https://doi.org/10.1007/s00450-019-00407-8
https://netflixtechblog.com/fit-failure-injection-testing-35d8e2a9bb2
https://netflixtechblog.com/fit-failure-injection-testing-35d8e2a9bb2
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/SimianArmy
https://www.netflix.com
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://www.youtube.com/watch?v=LaKGx0dAUlo
https://opentelemetry.io
https://doi.org/10.1109/ICSA53651.2022.00010

Bibliography 197

[PSS17] Aurojit Panda, Mooly Sagiv, and Scott Shenker. “Verification in the
Age of Microservices”. In: Proceedings of the 16th Workshop on Hot Topics
in Operating Systems. HotOS "17. Whistler, BC, Canada: Association
for Computing Machinery, 2017, 30-36. 1sN: 9781450350686. por:
10.1145/3102980.3102986. URL: https://doi.org/10.1145/3102980.
3102986.

[Res] Resiliency in Distributed Systems. https://blog.pragmaticengineer.
com/resiliency-in-distributed-systems/. Accessed: 2023-07-21.

[Ret] Rethinking How the Industry Approaches Chaos Engineering. https://

www . infoq . com/presentations/rethinking - chaos-engineering.
Accessed: 2021-05-21. 2020.

[R]20a] Casey Rosenthal and Nora Jones. Chaos engineering: system resiliency
in practice. O’Reilly Media, 2020.
[RJ20b] Casey Rosenthal and Nora Jones. Chaos engineering: system resiliency

in practice. O’Reilly Media, 2020.

[Rob+12] Jesse Robbins, Kripa Krishnan, John Allspaw, and Thomas A. Limon-
celli. “Resilience Engineering: Learning to Embrace Failure: A Dis-
cussion with Jesse Robbins, Kripa Krishnan, John Allspaw, and Tom
Limoncelli”. In: Queue 10.9 (2012), 20-28. 1ssn: 1542-7730. por: 10.
1145/2367376.2371297. URL: https://doi.org/10.1145/2367376.
2371297.

[RPA22] Kamala Ramasubramanian, Eliana Phillips, and Peter Alvaro. “Min-
ing microservice design patterns”. In: Proceedings of the 13th Sympo-
sium on Cloud Computing. 2022, pp. 190-195.

[SBG10] Jiri Simsa, Randy Bryant, and Garth Gibson. “dBug: Systematic Evalu-
ation of Distributed Systems”. In: 5th International Workshop on Systems
Software Verification (SSV 10). Vancouver, BC: USENIX Association,
Oct. 2010. urL: https://www.usenix.org/conference/ssv10/dbug-
systematic-evaluation-distributed-systems.

[Sig+10] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Tech.
rep. Google, Inc., 2010. urL: https://research.google.com/archive/
papers/dapper-2010-1.pdf.

https://doi.org/10.1145/3102980.3102986
https://doi.org/10.1145/3102980.3102986
https://doi.org/10.1145/3102980.3102986
https://blog.pragmaticengineer.com/resiliency-in-distributed-systems/
https://blog.pragmaticengineer.com/resiliency-in-distributed-systems/
https://www.infoq.com/presentations/rethinking-chaos-engineering
https://www.infoq.com/presentations/rethinking-chaos-engineering
https://doi.org/10.1145/2367376.2371297
https://doi.org/10.1145/2367376.2371297
https://doi.org/10.1145/2367376.2371297
https://doi.org/10.1145/2367376.2371297
https://www.usenix.org/conference/ssv10/dbug-systematic-evaluation-distributed-systems
https://www.usenix.org/conference/ssv10/dbug-systematic-evaluation-distributed-systems
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

198 Bibliography

[SKT21]

[SMAP19]

[Soc]

[SS+21]

[S5220]

[STVDH18]

[Tig+20]

Mohammad Reza Saleh Sedghpour, Cristian Klein, and Johan Tords-
son. “Service Mesh Circuit Breaker: From Panic Button to Performance
Management Tool”. In: Proceedings of the 1st Workshop on High Avail-
ability and Observability of Cloud Systems. HAOC "21. Online, United
Kingdom: Association for Computing Machinery, 2021, 4-10. 1sBN:
9781450383363. por: 10.1145/3447851 . 3458740. urL: https://doi.
org/10.1145/3447851.3458740.

Cleber Jorge Lira de Santana, Brenno de Mello Alencar, and Cas-
sio V. Serafim Prazeres. “Reactive Microservices for the Internet of
Things: A Case Study in Fog Computing”. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. SAC "19. Limassol,
Cyprus: Association for Computing Machinery, 2019, 1243-1251. 1sBN:
9781450359337. por: 10.1145/3297280.3297402. URL: https://doi.
org/10.1145/3297280.3297402.

Sock Shop: A Microservices Demo Application. https://microservices-
demo.github.io. Accessed: 2021-05-21. 2021.

Kridanto Surendro, Wikan Danar Sunindyo, et al. “Circuit Breaker
in Microservices: State of the Art and Future Prospects”. In: IOP
Conference Series: Materials Science and Engineering. Vol. 1077. 1. IOP
Publishing. 2021, p. 012065.

Jonas Sorgalla, Sabine Sachweh, and Albert Ziindorf. “Exploring
the microservice development process in small and medium-sized
organizations”. In: International Conference on Product-Focused Software
Process Improvement. Springer. 2020, pp. 453—460.

Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den
Heuvel. “The pains and gains of microservices: A systematic grey lit-
erature review”. In: Journal of Systems and Software 146 (2018), pp. 215-
232.

Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane
El Boussaidi, Jean Privat, and Yann-Gaél Guéhéneuc. “On the Study of
Microservices Antipatterns: A Catalog Proposal”. In: Proceedings of the
European Conference on Pattern Languages of Programs 2020. EuroPLoP
"20. Virtual Event, Germany: Association for Computing Machinery,
2020. 1sBN: 9781450377690. por: 10.1145/3424771.3424812. URL: https:
//doi.org/10.1145/3424771.3424812.

https://doi.org/10.1145/3447851.3458740
https://doi.org/10.1145/3447851.3458740
https://doi.org/10.1145/3447851.3458740
https://doi.org/10.1145/3297280.3297402
https://doi.org/10.1145/3297280.3297402
https://doi.org/10.1145/3297280.3297402
https://microservices-demo.github.io
https://microservices-demo.github.io
https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1145/3424771.3424812
https://doi.org/10.1145/3424771.3424812

[TLP18]

[Tol+19]

[Tuc+18]

[Tyl18]

[Val+20]

[Wal+96]

[Was+21a]

[Was+21b]

[WKR21]

[WLS20]

Bibliography 199

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. “Architectural
patterns for microservices: a systematic mapping study”. In: CLOSER
2018: Proceedings of the 8th International Conference on Cloud Computing
and Services Science; Funchal, Madeira, Portugal, 19-21 March 2018. -.
2018.

Saulo Soares de Toledo, Antonio Martini, Agata Przybyszewska, and
Dag IK Sjoberg. “ Architectural technical debt in microservices: a case
study in a large company”. In: 2019 IEEE /ACM International Conference
on Technical Debt (TechDebt). IEEE. 2019, pp. 78-87.

Haley Tucker, Lorin Hochstein, Nora Jones, Ali Basiri, and Casey
Rosenthal. “The business case for chaos engineering”. In: IEEE Cloud
Computing 5.3 (2018), pp. 45-54.

Tyler Lund. AWS re:Invent 2018: Chaos Engineering and Scalability at Au-
dible.com (ARC308). https://www.youtube.com/watch?v=7uJG3oPw_
AA. Accessed: 2022-06-05. 2018.

J. A. Valdivia, A. Lora-Gonzélez, X. Limoén, K. Cortes-Verdin, and J. O.
Ocharan-Hernandez. “Patterns Related to Microservice Architecture:
a Multivocal Literature Review”. In: Programming and Computer Soft-
ware 46.8 (2020), pp. 594-608. por: 10.1134/50361768820080253. URL:
https://doi.org/10.1134/S0361768820080253.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. “A note
on distributed computing”. In: International Workshop on Mobile Object
Systems. Springer. 1996, pp. 49-64.

Muhammad Waseem, Peng Liang, Mojtaba Shahin, Aakash Ahmad,
and Ali Rezaei Nassab. “On the nature of issues in five open source
microservices systems: An empirical study”. In: Evaluation and Assess-
ment in Software Engineering. 2021, pp. 201-210.

Muhammad Waseem, Peng Liang, Mojtaba Shahin, Aakash Ahmad,
and Ali Rezaei Nassab. “On the nature of issues in five open source
microservices systems: An empirical study”. In: Evaluation and Assess-
ment in Software Engineering. 2021, pp. 201-210.

Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. “Promises
and challenges of microservices: an exploratory study”. In: Empirical
Software Engineering 26.4 (2021), pp. 1-44.

Muhammad Waseem, Peng Liang, and Mojtaba Shahin. “A systematic
mapping study on microservices architecture in devops”. In: Journal
of Systems and Software 170 (2020), p. 110798.

https://www.youtube.com/watch?v=7uJG3oPw_AA
https://www.youtube.com/watch?v=7uJG3oPw_AA
https://doi.org/10.1134/S0361768820080253
https://doi.org/10.1134/S0361768820080253

200 Bibliography

[XSZ08]

[Yab+10]

[Yan+09]

[Zha+19]

[Zha+21a]

[Zha+21b]

[Zha+21c]

Bin Xin, William N. Sumner, and Xiangyu Zhang. “Efficient Program
Execution Indexing”. In: SIGPLAN Not. 43.6 (June 2008), 238-248.
1ssN: 0362-1340. por: 10.1145/1379022.1375611. URL: https://doi.
org/10.1145/1379022.1375611.

Maysam Yabandeh, Nikola KneZevi¢, Dejan Kosti¢, and Viktor Kun-
cak. “Predicting and Preventing Inconsistencies in Deployed Dis-
tributed Systems”. In: ACM Trans. Comput. Syst. 28.1 (2010). 1ssN:
0734-2071. por: 10.1145/1731060.1731062. URL: https://doi.org/10.
1145/1731060.1731062.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,
Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou.
“MODIST: Transparent Model Checking of Unmodified Distributed
Systems”. In: 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 09). Boston, MA: USENIX Association, Apr.
2009. urL: https://www.usenix.org/conference/nsdi-09/modist-
transparent-model-checking-unmodified-distributed-systems.

Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry, and Martin
Monperrus. “A Chaos Engineering System for Live Analysis and
Falsification of Exception-handling in the JVM”. In: IEEE Transactions
on Software Engineering (2019), pp. 1-1. por: 10 . 1109/ TSE . 2019 .
2954871.

Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel Bittman, and
Peter Alvaro. “3MileBeach: A Tracer with Teeth”. In: Proceedings
of the ACM Symposium on Cloud Computing. SOCC "21. Seattle, WA,
USA: Association for Computing Machinery, 2021, 458—472. 1sBN:
9781450386388. por: 10.1145/3472883.3486986. URL: https://doi.
org/10.1145/3472883.3486986.

Jun Zhang, Robert Ferydouni, Aldrin Montana, Daniel Bittman, and
Peter Alvaro. “3MileBeach: A Tracer with Teeth”. In: Proceedings
of the ACM Symposium on Cloud Computing. SOCC "21. Seattle, WA,
USA: Association for Computing Machinery, 2021, 458—472. 1sBN:
9781450386388. por: 10.1145/3472883.3486986. URL: https://doi .
org/10.1145/3472883.3486986.

Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry, and Martin
Monperrus. “A Chaos Engineering System for Live Analysis and
Falsification of Exception-Handling in the JVM”. In: IEEE Transactions
on Software Engineering 47.11 (2021), pp. 2534-2548. por: 10.1109/TSE.
2019.2954871.

https://doi.org/10.1145/1379022.1375611
https://doi.org/10.1145/1379022.1375611
https://doi.org/10.1145/1379022.1375611
https://doi.org/10.1145/1731060.1731062
https://doi.org/10.1145/1731060.1731062
https://doi.org/10.1145/1731060.1731062
https://www.usenix.org/conference/nsdi-09/modist-transparent-model-checking-unmodified-distributed-systems
https://www.usenix.org/conference/nsdi-09/modist-transparent-model-checking-unmodified-distributed-systems
https://doi.org/10.1109/TSE.2019.2954871
https://doi.org/10.1109/TSE.2019.2954871
https://doi.org/10.1145/3472883.3486986
https://doi.org/10.1145/3472883.3486986
https://doi.org/10.1145/3472883.3486986
https://doi.org/10.1145/3472883.3486986
https://doi.org/10.1145/3472883.3486986
https://doi.org/10.1145/3472883.3486986
https://doi.org/10.1109/TSE.2019.2954871
https://doi.org/10.1109/TSE.2019.2954871

[Zho+18a]

[Zho+18b]

Bibliography 201

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and
Dan Ding. “Fault analysis and debugging of microservice systems:
Industrial survey, benchmark system, and empirical study”. In: IEEE
Transactions on Software Engineering 47.2 (2018), pp. 243-260.

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and
Dan Ding. “Fault analysis and debugging of microservice systems:
Industrial survey, benchmark system, and empirical study”. In: IEEE
Transactions on Software Engineering 47.2 (2018), pp. 243-260.

Zipkin. https://zipkin.io. Accessed: 2024-05-01. 2024.

https://zipkin.io

	Acknowledgements
	Contents
	Introduction
	Thesis Statement
	Contributions
	Outline

	Background and Related Work
	Background
	Microservice Architectures
	Fault, Failures, and Errors in Microservices
	Fault Injection

	Related Work
	Industrial Practices
	Academic Literature

	Takeaways

	Microservices: Dependency Types
	Audible: Hard Dependencies
	Application Structure
	Application Behavior

	Netflix: Hard and Soft Dependencies
	Application Structure
	Application Behavior

	Takeaways

	Microservice Application Corpus
	Cinema Examples
	Industry Examples
	Audible
	Expedia
	Mailchimp
	Netflix

	Takeaways

	Distributed Execution Indexing
	Algorithm Requirements
	Synchronous Distributed Execution Indexing
	Signatures Are Too Coarse-Grained
	Increasing Granularity: Invocation Count or Call Stack
	Increasing Granularity: Path to Invoking RPC

	Asynchronous Distributed Execution Indexing
	Implementation
	Debugging Representation
	Projection and Partial Orders

	Verbose and Compact Representations
	Assignment

	Takeaways

	Service-level Fault Injection Testing
	Overview
	Algorithm
	Fault Injection Predicates
	Testing Process
	Encapsulated Service Reduction
	Service Encapsulation
	Algorithm

	Takeaways

	Evaluating SFIT: Corpus
	Experimental Configuration
	Distributed Execution Indexing
	Required: Invocation Count, Stack, and Path
	Nondeterminism is a Problem
	Payload Inclusion Distinguishes

	Service-level Fault Injection Testing
	Tests Generated and Increased Coverage
	Encapsulated Service Reduction
	Mocks
	Execution Time
	Misconfigured Timeouts

	Takeaways

	Industrial Microservices: Foodly
	Foodly
	How Foodly is Resilient To Faults
	Why Not Chaos Engineering?
	How Changes at Foodly are Tested
	Takeaways

	Evaluating SFIT: In Practice
	Philosophical Challenges
	Results Overview
	Experimental Configuration
	Component Tests
	Re-implementing Filibuster
	Enabling Filibuster
	Configuring Filibuster

	Socio-Technical Challenges
	Education and Documentation
	Development Processes

	Results
	Takeaways

	Microservices: Dependency Type Evolution
	Application Structure
	Hard Dependencies
	Soft Dependencies
	Latent Resilience Bugs
	Takeaways

	Principled Service-level Fault Injection Testing
	Overview of p-SFIT Approach
	Components of p-SFIT
	Structured Test Interface
	Behavior-Under-Fault Encoding API
	Compositional Reasoning
	IDE Plugin

	Implementation
	Failure Specification API
	Fault Matching API
	IDE Plugin
	p-SFIT Testing Procedure
	Hard Dependency Subprocedure
	Soft Dependency Subprocedure

	Takeaways

	Conclusions
	Takeaways
	Discussion
	Conclusion

	Using p-SFIT: A Tutorial
	Single Adjustment Example
	setupBlock: Perform Test Setup
	stubBlock: Stub Downstream Dependencies
	executeTestBlock: Write the Functional Test
	assertTestBlock: Perform Test Assertions
	assertStubBlock: Verify Stub Invocations
	teardownBlock: Perform Test Teardown
	failureBlock: Application Failure Behavior

	Multiple Adjustment Example
	Updating the Happy Path Test
	Updating the Application's Failure Behavior

	Adding Another Soft Dependency
	Takeaways

	Availability
	List of Figures
	List of Tables
	Bibliography

