
Service-Level Fault Injection Testing

Christopher S. Meiklejohn
Carnegie Mellon University
Pittsburgh, PA, United States

cmeiklej@cs.cmu.edu

Andrea Estrada
Carnegie Mellon University
Pittsburgh, PA, United States
arestrad@andrew.cmu.edu

Yiwen Song
Carnegie Mellon University
Pittsburgh, PA, United States
yiwenson@andrew.cmu.edu

Heather Miller
Carnegie Mellon University
Pittsburgh, PA, United States
heather.miller@cs.cmu.edu

Rohan Padhye
Carnegie Mellon University
Pittsburgh, PA, United States
rohanpadhye@cmu.edu

Abstract

Companies today increasingly rely on microservice architec-
tures to deliver service for their large-scale mobile or web
applications. However, not all developers working on these
applications are distributed systems engineers and there-
fore do not anticipate partial failure: where one or more of
the dependencies of their service might be unavailable once
deployed into production. Therefore, it is paramount that
these issues be raised early and often, ideally in a testing
environment or before the code ships to production.
In this paper, we present an approach called service-level

fault injection testing and a prototype implementation called
Filibuster, that can be used to systematically identify re-
silience issues early in the development of microservice ap-
plications. Filibuster combines static analysis and concolic-
style execution with a novel dynamic reduction algorithm
to extend existing functional test suites to cover failure sce-
narios with minimal developer effort. To demonstrate the
applicability of our tool, we present a corpus of 4 real-world
industrial microservice applications containing bugs. These
applications and bugs are taken from publicly available in-
formation of chaos engineering experiments run by large
companies in production. We then demonstrate how all of
these chaos experiments could have been run during devel-
opment instead, and the bugs they discovered detected long
before they ended up in production.

CCSConcepts: •Computer systems organization→Re-

liability.

Keywords: fault tolerance, fault injection, verification

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3487005

ACM Reference Format:

Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather
Miller, and Rohan Padhye. 2021. Service-Level Fault Injection Test-
ing. In ACM Symposium on Cloud Computing (SoCC ’21), November
1–4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3472883.3487005

1 Introduction

Nowadays, large-scale web applications with significant user
bases are typically built using a microservice architecture.
All companies listed in the Fortune 50 are either hiring for, or
have publicly discussed, their use of a microservice architec-
ture to deliver service to their users. The recent popularity
of microservice architectures is a direct result of the benefits
that this architectural style brings to the organizations that
adopt it–smaller teams can focus on individual services writ-
ten in the best programming language to solve their problem,
and are thus able to more rapidly deliver software at scale.
However, while microservice architectures help reduce the
burden of coordinating changes between teams to the same
application, they are known to increase software complexity.
The harsh reality of microservices is that they suddenly

force every developer to become a cloud/distributed systems
engineer, dealing with the complexity that is inherent in
distributed systems [38]. Specifically, partial failure, where
the unavailability of one or more services can adversely
impact the system in unknown ways.
This paper presents the service-level fault injection test-

ing (SFIT) technique, as well as Filibuster, a corresponding
tool for automatically testing microservice applications for
resilience issues related to partial failure. Filibuster can
extend an existing functional test suite to cover failure sce-
narios automatically.
To demonstrate the additional complexity a developer

faces when moving from a monolithic architecture to a mi-
croservice architecture, consider an application that lets you
stream audiobooks. One decomposition [43] of this appli-
cation into components could look like the following, with
one component for each user functionality; storage of audio
files, storage of audiobook metadata, storage of user per-
missions, DRM authorization, content delivery service, user

https://doi.org/10.1145/3472883.3487005
https://doi.org/10.1145/3472883.3487005


SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

permissions, and a request orchestrator that communicates
between the different components.

In a traditional monolithic architecture, these components
would be written as modules in the same code base and any
communication that needs to happen between components
would occur through either function calls or method invoca-
tions. In a microservice architecture, however, each of these
different components would live as independent services
that would potentially run on a different compute node, and
all communication between services would be performed as
calls across the network.
This architectural shift from monolithic to microservice

allows organizations to work in smaller, more focused teams
to build services with well-defined service boundaries that
scale independently with respect to demand. This swaps one
type of complexity (requiring developers to have to under-
stand all components of an application) for a different type
of complexity (understanding application behavior under
partial failure, where one or more of the components you
rely on is either unavailable or responding too slowly).

Unfortunately, too often the required error handling code
for partial failures is either not written or not tested by
developers due to the complexity and effort required to mock
components properly for testing. This remains true despite
previous research on open source distributed data systems
that shows that many production failures could have been
prevented with simple testing of error handling code. [48]
Today, to ensure their application is resilient to partial

failure, we see companies increasingly turning to chaos engi-
neering [44]—a technique pioneered by Netflix, where faults
are randomly injected into a live production environment
while the application is observed in order to identify adverse
behavior from the end user’s perspective. Chaos engineer-
ing’s popularity and adoption outside of Netflix is notable. At
least 12 of the companies listed on the Fortune 50 have spo-
ken publicly about their use of chaos engineering, and one
startup offer products dedicated to chaos engineering [12].
Chaos engineering has repeatedly demonstrated success in
identifying issues that arise due to partial failure. In this pa-
per, we ask could these errors have been detected earlier
in that application development process?
The lack of open-source microservice applications and

publicly available bug databases makes it difficult for re-
searchers to answer this question. The few open-source mi-
croservice applications [16, 17] that exist today are fictional
and used primarily for illustrating how to create these types
of applications. Subsequently, these examples do not contain
bugs. Research on techniques and tools to identify resilience
issues in microservice architectures has therefore had to rely
on collaborations with companies under strict nondisclosure
agreements [18]. Other work [50] has attempted to build a
large microservice application seeded with bugs from indus-
trial surveys, but only a small subset of the bugs are actually
specific to microservice architectures.

The contributions of this paper are the following:
• an approach for testing microservice applications

for resilience. Service-level Fault Injection Testing (SFIT)
combines static analysis and concolic-style test genera-
tion to explore all possible failures between microservices,
starting from an existing passing functional test suite.

• a novel dynamic reduction algorithm. SFIT uses an
algorithm that reduces the combinatorial explosion of the
search space by leveraging the decomposition of applica-
tions into independent microservices.

• an implementation of SFIT called Filibuster. This
Python-based tool can be used to test services that com-
municate with HTTP. Our prototype allows services to be
tested for resilience locally and have demonstrated that it
can run in the Amazon CodeBuild CI/CD environment to
detect issues before they reach production.

• a corpus of microservice applications and bugs im-

plemented in Python. This corpus contains: 8 small
microservice applications each demonstrating a single
pattern used in microservice applications; and 4 reimple-
mented industry examples taken from publicly available
conference talks: Audible, Expedia, Mailchimp, and Netflix.

• an evaluation of Filibuster on the corpus.Wedemon-
strate that Filibuster can be used to identify all of the
bugs in the corpus. We show the optimizations possible
via dynamic reduction and provide insights on how to best
design microservice applications for testability.

2 Research Challenges and Process

Answering the question of whether these errors could have
been detected earlier in the development process is not
straightforward due to the lack of open-source microservice
industrial applications and their associated bug reports—the
two main corpora that typically facilitate research in the
field of software testing.

For example, much of the research into testing distributed
systems for resilience relies on open-source infrastructure
projects (e.g., Apache Zookeeper, Apache Cassandra) where
all development is performed using a public bug tracker
and public software repository that contains all historical
revisions of the software and the reasons for change. These
resources allow researchers to reproduce previously encoun-
tered fully-documented bugs. However, most of these projects
are monolithic in design. That is, they are single applications
that, while distributed, typically are constructed in a mono-
lithic style and deployed as replicas. Rather unfortunately,
they do not reflect the type of microservice applications be-
ing built today: where each service provides its own unique
functionality andmodularization is a core design tenet. As an
example, Uber, a ride-sharing service, in 2020, had 2,200 mi-
croservices, each providing its own unique functionality [4].
As another example, most of the research into software

testing uses bug databases [22, 25, 26, 31, 32, 45, 51] assem-
bled by the research community–collections of software



Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

projects with documented bugs harvested from open-source
code repositories. However, these projects suffer from two
issues that make them unsuitable for use in microservice
testing; (i) they are also monolithic in design, and (ii) and
many, if not all, of the bugs contained in the major bug
repositories contain bugs that could be identified through
traditional software testing using regular unit or functional
tests. Said simply–these bugs are not specific to resilience
issues in microservice architectures.
We believe that such corpora do not exist today for mi-

croservice applications for (at least) two reasons. First, mi-
croservices are typically adopted within organizations to
facilitate growth by breaking large applications into distinct
services with independent teams. These services are usually
core intellectual property of the company and are therefore
not open source. Second, companies that experience bugs
typically do not publicly disclose the details of the root cause
of the fault. In fact, one employee of a large internet service
whom we talked to told us that legally these bugs could not
be disclosed for a publicly traded company.
To create our corpus, we turned our attention to confer-

ence talks at industry events such as Chaos Conf and AWS
re:Invent, where it is common for industry practitioners
to discuss (and advocate for) the use of chaos engineering.
In order to find these talks, we searched for terms such as
“chaos engineering” or “resilence”, “chaos”, or “fault injec-
tion”. Building upon this, we also identified companies that
sold chaos engineering services and looked at the clients
that were listed on their web pages. From there, we did a
backwards search for these companies to find a presentation
or blog post discussing their use of chaos engineering.

In total, we systematically reviewed 50 presentations (rep-
resenting 32 companies1) on chaos engineering. These in-
cluded technical talks hosted on YouTube and blog posts.
This review demonstrated that chaos engineering is used
by companies of all sizes, in all sectors, including but not
limited to; large tech firms (e.g., Microsoft, Amazon, Google),
big box retailers (e.g., Walmart, Target), financial institutions
(e.g., JPMC, HSBC), and media and telecommunications com-
panies (e.g., Conde Nast, media dpg, Netflix.)

In most of these presentations, companies had two major
concerns; (i) the reliability of software under development,
and (ii) the reliability of the cloud infrastructure that the
companywas running their software on. To create the corpus,
we looked for presentations that met any of this criteria:

• Did the presentations provide detail on a real bug that
they discovered using chaos engineering?

• Did the presentation run a chaos engineering experi-
ment that could have been performed locally?

1We provide the list to a single representative presentation, each of the 32;
in one case, we could find information that chaos engineering was used,
but no talk or blog post discussing its use: https://pastebin.com/qB7gdg45.

Finally, we ruled out bugs where the bug did not occur in
application code, but instead was related to incorrect cloud
configuration. We noted several of these examples ranging
from incorrect configuration of authorization policies (c.f.,
AWS IAM) to missing autoscaling rules (c.f., AWS EC2.)

In the end, we settled on 4 presentations from the follow-
ing companies: Audible, Expedia, Mailchimp, and Netflix.

Audible [7] is a company that provides an audiobook
streaming mobile application. In their presentation, they
present the description of a bug where the application server
does not expect to receive a NotFound error when reading
from Amazon S3. This error is unhandled in the code and
propagated back to the mobile client with a generic error
message. They discovered this bug using chaos engineering.

Expedia [9] is a company that provides travel booking. In
their presentation, they discuss using chaos engineering to
verify that if their application server attempts to retrieve ho-
tel reviews from a service that sorts them based on relevance,
and that service is unavailable, that they will fallback to an-
other service that provides chronological sorted reviews.

Mailchimp [13] is a product for e-mail communication
management. In their presentation, they discuss two bugs;
(i) legacy code that does not handle the case where their
database server returns an error code to indicate that it is
read-only, and (ii) one service becomes unavailable and re-
turns an unhandled error back to the application. Both of
these bugs were discovered using chaos engineering.

Netflix [15] is a media streaming product. We reviewed
two presentations from Netflix discussing the services in-
volved in loading a Netflix customer’s homepage. Netflix
doesn’t disclose the actual fallback behavior for each service
in these talks, but instead alludes to possible fallback behav-
ior. In our implementation, we took some liberties supposing
what this behavior is, but kept it realistic.

In one presentation, Netflix discusses several bugs that
they discovered using their chaos engineering infrastructure.
These are: (i) misconfigured timeouts, where nested service
calls aren’t configured correctly to allow requests that take
longer than expected, but remain within the timeout interval,
(ii) fallbacks to the same server, where services are configured
with fallbacks that point back to the failed service, and (iii)
critical services with no fallbacks, where critical services do
not have fallbacks configured. We introduced all three of
these bugs in our Netflix implementation.

3 Service-level Fault Injection Testing

In this section, we overview our technique for identifying
resilience bugs in microservice applications we call service-
level fault injection testing (SFIT). SFIT takes a developer-
first approach, integrating fault injection testing into the
development process as early as possible without requiring
developers to write specifications in a specific specification
language. This decision is key, as it seamlessly integrates our

https://pastebin.com/qB7gdg45


SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

Service B

Test Server

Service A

Service C

Request path of test
executed at test server

Instrumentation call from
service to test server

Figure 1. Architecture of Filibuster. Instrumentation calls
are made from each service to the test server to identify
where remote calls are issued from, where they are received,
and to inject faults during test execution.

approach with developers’ existing development environ-
ments and tools. Our architecture is shown in Figure 1. Here,
we consider an example where Service A talks to B, and B
talks to C before returning a response back to the caller.
SFIT builds on three key observations made about how

microservice applications are being developed today:
Microservices developed in isolation. Microservice ar-
chitectures are typically adopted when teams need to facil-
itate rapid growth, thereby breaking the team into smaller
groups that develop individual services that adhere to a con-
tract. This contract typically requires that two or more teams
meet and agree to an API between the services that they man-
age. Therefore, individual team members typically do not
understand the state or internals of services outside of their
control well enough to write a detailed specification of the
application to automatically verify it with a model checker.
Mocking could prevent failures.As can be observed from
both our survey (Section 2) and the applications that we
reimplemented as part of our corpus (Section 6), all of the
bugs we discovered and discussed could have been detected
earlier if the developers had written mocks that simulated
the failure of the remote service in a testing environment.
We cannot speak to why these tests were not written, but we
assume that this might be the case for two reasons; (i) writing
tests with mocks is a time consuming process with minimal
apparent benefit to the developer as the failure case may be
rare, or (ii) the failure case is not known to the developer at
the time of development.
Functional tests are the gold standard. In lieu of writing
specifications, developers write multiple end-to-end func-
tional tests that verify application behavior. Therefore, de-
velopers already believe that the investment in end-to-end
testing is worthwhile, and we believe any successful fault
injection approach should start there.

3.1 SFIT Approach

SFIT is based on our three key observations about how mi-
croservices are being developed today. In this presentation,

we make two simplifying assumptions: services communi-
cate over HTTP, which is not a limiting factor of our design,
and that a single functional test exercises all application be-
havior. In practice, applications will have an entire suite of
functional tests to cover all application behavior.

3.1.1 Overview. We assume that we start with a passing
functional test, written by the developer, that executes the
application under some non-failing scenario and verifies
some application behavior. We assume that this passing test
has already ruled out logical errors.

When running the initial passing execution, at each point
where we reach a location where communication happens
with another service, we schedule another test execution that
will re-execute the test and inject a failure for this request. If
this request can fail multiple ways, we schedule an execution
for each possible failure. These subsequent executions are
placed on a stack during execution and this strategy applied
recursively until all paths have been explored. This algorithm
is inspired by the concolic testing algorithm from DART [28].
In Section 3.1.2, we discuss specifically how fault injection is
performed when running the subsequent tests. The stack of
test executions to run is maintained by a server process that
all services communicate with. This server is responsible for
the actual execution of functional tests.

Consider the sample architecture from Audible presented
in Figure 2. In this example, the request from our functional
test originates at the Audible App. The first request issued
is to the Content Delivery Engine which can fail with a
Timeout or ConnectionError. We add two executions on
the stack of executions to explore and continue executing
the test. In Section 3.1.3, we discuss how we determine what
errors each call to a remote service can throw or return.

Next, we reach the Content Delivery Service and schedule
the two executions where Content Delivery Engine was
successful and the call to Content Delivery Service fails.
This is performed for the entirety of the initial request. As
we execute all tests in the stack, we may reveal new paths
by triggering failures. For example, failure of the Content
Delivery Engine could cause an additional path to be exposed
to a logging service. We continue to explore until all paths
have been fully explored.

In this example, several services have multiple dependen-
cies; for example, the Audible Download Service talks to the
Ownership service, the Activation service, and the Stats ser-
vice. In this case, we have to schedule executions that cover
the entire space of failures–all of the ways each service can
fail independently with all of the combinations of how they
can fail with one another. In Section 4, we discuss how this
can be reduced to remove redundancy.
As the developer runs these generated tests, they will

have to adapt their functional test accordingly to consider
failure. To do this, we provide a helper module that allows
the developer to write conditional assertions when a failure



Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

1.2: URL specified by 1.1
on success of 1.1
Starts download

returns HTTP 200, 403, 404, 500, 503

Content Delivery
Engine

2.2: /books/<book_id>/licenses/<license>
on success of 2.1

Retrieve XML chapter descriptions
returns HTTP 200, 403, 404, 500

2.1: /user/<user_id>/books/<book_id>
DRM checks and license activation

returns HTTP 200, 403, 404, 500, 503

Content Delivery
Service

1.1: /user/<user_id>/books/<book_id>
Returns URL to CDS

returns HTTP 200, 404, 500

Audible App

Asset Metadata

Audio Assets

3.1: /user/<user_id>/books/<book_id>
Verify ownership of audiobook

returns HTTP 200, 403, 404, 500

3.3: /user/<user_id>/books/<book_id>
on success of 3.2, where stats failures are ignored

Record stats
returns HTTP 200, 500

Audible Download
Service

Ownership Activation Stats

3.2: /books/<book_id>
on success of 3.1

Authenticate user request
returns HTTP 200, 404, 500

2.3: /books/<book_id>/licenses/<license>
on success of 2.2
Retrieve audio file

returns HTTP 200, 403, 404, 500

Figure 2. Part of the microservice architecture of Audible.

is present. In Section 3.1.4, we discuss how functional tests
can be adapted. We also provide a mechanism to replay a
counterexample: a single failing generated test.

3.1.2 Fault Injection. Our approach relies on the ability
to inject failures for remote calls and therefore it is essential
that we can instrument the library used for making remote
calls to alter their response. This ability to interpose on re-
mote calls is already rather commonplace: many popular
telemetry systems (e.g., opentelemetry, opentracing) already
provide libraries that automatically wrap calls to common
libraries used for remote communication (e.g., HTTP, gRPC)
in order to assist developers in understanding application
performance by sending telemetry information to a remote
telemetry service (e.g., jaeger). We leverage this instrumen-
tation design for fault injection: instead of returning the
actual response from the remote service, we return a failure
response instead based on the fault that was injected. This
instrumentation communicates with a server process that
aggregates information collected by the instrumentation in
order to determine the next test to run.

3.1.3 Fault Identification. Our approach injects faults
that represent the failures that can occur for a given service.
This relies on knowing two different types of failures:

• Failures originating at the call site. We have to con-
sider faults that can originate at the call site. For example,
when using the requests library in Python for performing
HTTP requests, there are 23 exceptions that the library can
raise when performing a request. To address this concern,
we can either specify the module containing the excep-
tions or specify them manually in configuration. For this
presentation, we will only consider the two most common:
Timeout and ConnectionError.

• Failures originating at the remote service. A service
might handle a failure of one of its dependencies and return
a failure. For example, if a service that is a dependency
of another service throws a Timeout exception, it may be
caught and a 500 returned. We use a static analysis on the
service’s source code to over-approximate the responses
that the service can return: in Flask, this is possible using
looking for return or raise statements.
One of the difficulties with HTTP is that requests made be-

tween different services use a URL provided as a string. This
stringmay not be a unique identifier of the actual service that
is being contacted, as these URLs may use IP addresses or
unrelated DNS names. To solve this, we use additional instru-
mentation to record the service that is actually reached when
a call is made. This instrumentation, instead of being used on
the caller’s library used for remote communication, is placed
on the web framework that receives the request. Therefore,
the instrumentation can record the callee’s service name be-
fore the request is processed by the application code. Similar
to the instrumentation that we use on the caller’s side, we
leverage the same design as the common telemetry systems
(e.g., opentelemetry) take and transmit this information to
the server to determine the next test to execute.
3.1.4 TestAdaptation. As developerswill be startingwith
a functional test that assumes no failures, developers will
need to update their functional test to contain proper test
oracles for the cases where dependent components fail.
To do this, we provide a helper module for writing con-

ditional assertions. This helper lets the developer write a
conditional statement such as if a fault was injected on Ser-
vice A and place appropriate assertions on what the behavior
of the system should be under failure. Developers will add
these conditional assertions into the existing functional test.
We do not believe this to be an intrusive process, as the



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

manual approach (using mocks) would require test duplica-
tion, each with custom assertions. For a similar reason, we
avoid static test generation and favor a dynamic approach
where large numbers of tests do not need to be consistently
regenerated during software development.
We imagine a typical workflow as the following. Devel-

opers start with a passing functional test and SFIT begins
injecting faults. As faults are injected, the functional test
will fail with assertion errors. Using the helper, developers
will write an conditional assertion to capture desired failure
behavior. An example of one such assertion for the Audible
application might say “if a fault was injected on the stats ser-
vice, the service should still play the audiobook.” From there,
the developer can use counterexample replay the previous
failing test to validate these newly added assertions.

4 Dynamic Reduction

In order to identify corner case bugs, we must ideally ex-
plore combinations of service failures. To achieve maximum
coverage of the failure space — for a single functional test,
where service responses are deterministic and there are no
data dependencies on previous failures — the number of test
executions that are required is quite large.
A straightforward approach of injecting failures in each

combination of service requests requires executing tests in
a magnitude that is exponential in the number of service re-
quests. However, we can leverage the decomposition of an
application into independent microservices to dramatically
reduce the search space without loss of completeness.
Let us revisit the Audible example that is presented in

Figure 2. Excluding the complete failure space for readability,
let us consider just the failures of a subset of the services:
Audible Download Service (ADS) and its dependencies and
Content Delivery Service (CDS) and its dependencies.

When exploring failures of the ADS, we have to consider
the failure of its 3 dependencies: the Ownership, the Acti-
vation, and the Stats services. If either of the Ownership or
Activation service calls fail, the entire request is failed. How-
ever, if the call to the Stats service fails, that failure has no
impact on the result of the request. After testing, we know
that any failure of the Ownership or Activation service will
cause the ADS to return a 500; however, a failure of the Stats
service will not impact the response of the ADS - regardless
of it’s failure, the service will return 200 as long as both
Ownership and Activation provide a successful response.

With the CDS, at a minimum we have to consider the fail-
ure of the Asset Metadata service independently, the failure
of the Audio Assets independently, and then the combina-
tions of the ways each service can fail together. However, in
order to fully explore the failure space using our approach,
we need to consider the failure of the Stats service combined
with all possible failures of the Asset Metadata service and
the Audio Asset service. These are failures that we already

know the impact (and outcome) of, and therefore should not
have to test together. For example:
• we already know that a failure of the Stats service has no
impact on the ADS; and

• we already know the impact of any combination of failures
of the Asset Metadata and Audio Asset services.
It is critical then to identify a way to leverage our knowl-

edge of service failures and their impact on the services that
take them as dependencies. To do this, we can take advantage
of the following 3 key observations:
• First, we have to fully explore all of the ways a service’s
dependencies can fail. This ensures that we understand
the behavior of a single service when one or more of its
dependencies fail and what the resulting failures returned
by that service are.
If we refer to the Audible example in Figure 2, we see that
we have to fully explore the combination of the ways that
ADS’s dependencies can fail (as well as the way the CDS’s
dependencies can fail, etc.)

• Second, if we are about to inject faults on at least one de-
pendency of two or more different services, we already
know the impact that those failures will have on the ser-
vices who takes them as dependencies.
If we refer to the Audible example in Figure 2, we already
knowwhat the ADSwill return when it’s dependencies fail
in any possible combination, as we’ve already run that test.
We also already know what the CDS will return when it’s
dependencies fail in any possible combination for the same
reason. Therefore, we do not have to inject the fault at
the dependencies; we can inject the appropriate response
directly at the ADS or CDS directly.

• Third, if we have already injected that fault at that service,
then the test is redundant, as we’ve already observed that
behavior of the application.
If we refer to the Audible example in Figure 2, we do not
need to test the Stats service failing in combination with
failures of the Audio Assets or Audio Metadata services,
as we already know the outcome of those failures on the
services that take them as dependencies; we have also
already observed those outcomes.
Algorithm 1 presents the dynamic reduction algorithm.

This algorithm reduces the exponent in the size of the test
execution space from the total number of service requests
to the maximum number of outgoing requests from any given
service. In Figure 2, this reduces the exponent from 8 (the total
number of edges) to 3 (the maximum branching factor.) Since
microservice applications typically scale in depth rather than
breadth, dynamic reduction makes SFIT tractable. Section 7
validates the benefit of reduction empirically.

Dynamic reduction is automatic and requires no additional
information from the application developer. It is important
to note that dynamic reduction is not sound in general, and
refer to our aforementioned assumptions on the behavior of



Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

a single functional test: service responses are deterministic
for a single functional test and that service code does not
contain data dependencies on previous failures.
Algorithm 1: Dynamic Reduction
1 t: a test to run containing faults to inject
2 pts: the list of tests already run
3 Function ShouldReduce(t, pts):
4 all_found = True
5 for each service and it’s dependencies in 𝑡
6 for (𝑠, 𝑑) in deps (t):
7 found = False
8 find a previous execution
9 for 𝑝𝑡 ∈ 𝑝𝑡𝑠:

10 where the outcomes match for all deps
11 if 𝑑 ∈ deps (pt):
12 found = True
13 if not found:
14 all_found = False
15 if all deps are found, 𝑡 can be skipped.
16 return all_found

5 Prototype Implementation: Filibuster

Our prototype of service-level fault injection testing, named
Filibuster, is implemented in Python and open-source. [10]
As all of the services in the examples communicate us-

ing HTTP, we used the popular requests library. To enable
fault injection, we extended the opentelemetry instrumenta-
tion library to support fault injection and enable metadata
assignment to requests. To identify the target of requests
made to services via URL, we extended the opentelemetry
instrumentation library for Flask to record the service where
instrumented requests were terminated.
Our instrumentation assigns execution indexes [46] and

vector clocks [27, 42] to each request to uniquely identify
each request. This information is also forwarded to each
service through our instrumentation. Execution indexes are
used to correlate calls between different test executions for
dynamic reduction; vector clocks are used to identify the
dependencies of a particular service.
Our instrumentation communicates with the Filibuster

server, as shown in Figure 1. The server is responsible for
starting all of the services associatedwith an application in ei-
ther local processes, Docker Compose, or in Kubernetes. This
server runs the functional test, records and maintains the
stack of test executions to execute, performs functional test
assertions, reports test failures, and aggregates test coverage.
The server provides an API that can be used by functional
tests to write conditional assertions and using a counterex-
ample file, allows for test replay. Test coverage is aggregated
from each individual service by the server.
Filibuster requires a static analysis to determine the

types of failures that each service can return. In our prototype

implementation, we use a purely lexical analysis that over-
approximates these errors by performing abstract syntax
tree traversals on the source code of each service. This anal-
ysis is highly tailored to the way that Flask applications are
written by identifying raise statements that throw excep-
tions that are converted to HTTP responses containing status
codes indicating error by Flask. (e.g., ServiceUnavailable,
NotFound.) If this type of analysis is not possible, develop-
ers can opt to test all possible failures, as there are a finite
number of HTTP status codes that indicate error.

Filibuster can inject the following faults (or failures):
• Callsite exceptions: thrown by the requests library that
indicate conditions like connection error or timeout. For
all exception types, Filibuster can conditionally contact
the other service before throwing the exception. For time-
outs, Filibuster can conditionally wait the timeout period
before throwing a timeout exception.

• Error responses: from a remote service using standard
HTTP error codes that indicate conditions like Internal
Server Error or Service Unavailable. For each error code,
Filibuster can conditionally return an associated body.
Each are configurable when running Filibuster; this en-

ables developers to run a subset of these errors during local
development, a larger subset on push to a feature branch,
and the complete subset as a nightly job. We have configured
our prototype to run in AWS CodeBuild following this exact
design, which allows for rapid feedback to developers and
complete coverage as nightly builds.

As Filibuster has been written as a server, cross-language
support is possible but not yet implemented. All communi-
cation between instrumentation and the Filibuster server is
through a language-independent protocol; anything language-
specific is done in the instrumentation library. We discuss
expanding this to other languages in Section 8.

6 Application Corpus

Our corpus contains 8 small microservice applications, the
cinema examples, each demonstrating a particular pattern
we observed in microservice applications during our sur-
vey. It also includes 4 recreations of industry examples:

Audible, Expedia, Mailchimp, and Netflix.
Each example contains unit tests as well as functional tests

that verify functional behavior of the application. Since the
functional tests were not discussed in most of the talks, we
wrote a functional test that we believe correctly reflects the
what the application should do. For the cinema example, we
have a single functional test that attempts to retrieve the
bookings for a particular user.
All of the examples in the corpus are implemented in

Python using the Flask web framework [11]. Each example
can be run locally in-process, or can be run in Docker con-
tainers. Using Docker [8] containers, each example can also
be run in any Kubernetes environment (e.g., minikube [14],



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

AWS Elastic Kubernetes Service [6]) as deployment and ser-
vice configurations are provided for each service.

6.1 Cinema Examples

For each of the cinema examples, we started using amicroser-
vice application taken from a tutorial [1] on writing them.
This application mimics an online cinema service where
users can look up information on the movies that they have
bookings for. It’s composed of 4 services:

• Showtimes: returns the show times for movies;
• Movies: returns information for a given movie;
• Bookings: given a username, returns information about
the bookings for that user;

• Users: stores user information and orchestrates the re-
quest from the end user by first requesting the users’s
bookings, and for every booking performs a subsequent
request to the movies service for information about the
movie. For the functional test, exercise this behavior.

There are 8 cinema examples; each demonstrating a dif-
ferent pattern observed in microservice applications. Here,
we provide the additional cinema examples, all examples are
modifications to cinema-1, unless specified.

• cinema-2, bookings talks directly to the movies.
• cinema-3, same as cinema-2, but the users service has a
retry loop around its calls to the bookings service.

• cinema-4, same as cinema-2, but each service talks to
an external service before issuing any requests: the users
service makes a request to IMDB; the bookings service
makes a request to Fandango; the movies service makes a
request to Rotten Tomatoes.

• cinema-5, all requests happen regardless of failure; in the
event of failure, a hardcoded, default, response is used.

• cinema-6, adds a second replica of bookings, that is con-
tacted in the event of failure of the primary replica.

• cinema-7, same as cinema-6, but the users service makes
a call to a health check endpoint on the primary bookings
replica before issuing the actual request.

• cinema-8, example is collapsed into monolith where an
API server makes requests to the it with a retry loop.

6.2 Industry Examples

In this section, we provide a description of the four industrial
examples that we implemented: Audible, Expedia, Mailchimp,
and Netflix. These examples are not meant to reproduce
the entire microservice architecture of these companies: we
focus only on the services involved in a particular chaos
experiment that they performed.

6.2.1 Audible. TheAudible example, presented in Figure 2,
has 8 services along with a mobile client. To simplify the
example, we use a service to stand in for the behavior of the
mobile application. The services in the Audible example are:

• Content Delivery Service (CDS): given a book identifier
and a user identifier, return the actual audio content and
audio metadata after authorization;

• Content Delivery Engine (CDE): returns the URL of the
correct CDS to contact;

• Audible App: simulates the mobile application by first,
issuing a request to the CDE to find the URL for the ap-
propriate CDS instance to contact based on the book’s
identifier and then issues a request to it;

• Audible Download Service: orchestrates logging and
DRM authorization once ownership is verified;

• Ownership: verifies ownership of the book;
• Activation: activates a DRM license for the user;
• Stats: maintains book and license activation statistics;
• Asset Metadata: storage for the audio asset metadata
which contains information on chapter descriptions;

• Audio Assets: storage for the audio files.

Compared to Audible’s actual deployment, some of the
components we are representing as services are actually
cloud services. We enumerate those differences and adjust-
ments made here. First, the Asset Metadata and Audio Assets
services are AWS S3 buckets. To simulate this, we created
HTTP services that either returns a 200 OK containing the as-
set if available, or a 404 Not Found if the asset isn’t present.
Second, the Ownership and Activation services are AWS RDS
instances. To simulate this, we created HTTP services that
implement a REST pattern: a 403 Forbidden is returned if
the user does not own the book, a 404 Not Found if the book
doesn’t exist, otherwise, a 200 OK. Third, the Stats service is
an AWS DynamoDB instance. To simulate this, we created
an HTTP service that returns a 200 OK.
For the functional test, we have a test that attempts to

download an audiobook for a user. For the bug, the Asset
Metadata service can return a 404 Not Found response if
the chapter information for a book is missing: this is the bug
discussed in the Audible presentation and causes a generic
error to be presented to the user in the mobile application.

6.2.2 Expedia. The Expedia example has 3 services:

• Review ML: returns reviews in relevance order;
• Review Time: returns reviews in chronological order;
• API Gateway: returns reviews to the user from either
Review ML or Review Time, depending on availability.

The Expedia example has one functional test that loads
the information for a hotel from the API gateway. In this
example, there isn’t a specific bug, but a replication of a
chaos experiment that Expedia did actually run.

6.2.3 Mailchimp. The Mailchimp example has 5 services:

• Requestmapper: maps pretty URLs in e-mail campaigns
to actual resource URLs;

• DB Primary: primary replica of their database;
• DB Secondary: secondary replica of their database;



Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

• App Server: makes a request to the Requestmapper ser-
vice to resolve a URL and then perform a read-then-write
request to the database, with fallback to secondary data-
base replica is the primary replica is unavailable;

• Load Balancer: load balances requests.

Compared to Mailchimp’s actual deployment, some of the
components we are representing as services are actually
non-HTTP services. We enumerate those differences and
adjustments made here. First, the DB Primary and Secondary
services are MySQL instances. To simulate this, we created
an HTTP service that either returns a 200 OK on a successful
read or write or a 403 Forbidden if the database is read-only.
Second, the Load Balancer service is an HAProxy instance.
To simulate this, we created an HTTP proxy.

For the functional test, we attempt to resolve a URL. For
the bugs, the Mailchimp example contains two:

• Bug #1:MySQL instance is read-only.When theMySQL
instance is read only, the database returns an error that is
unhandled in one area of the code. Since Mailchimp uses
PHP, this error is rendered directly into the output of the
page and we simulate this by turning the 403 Forbidden
response into output that’s directly inserted into the page.

• Bug #2: Requestmapper is unavailable. When the Re-
questmapper service is unavailable, the App Server fails
to properly handle the error, returning a 500 Internal
Server Error to the Load Balancer. However, the Load
Balancer is only configured to handle a 503 Service
Unavailable error by returning a formatted error page.
This is an example of missing or incorrect failure handling.

6.2.4 Netflix. The Netflix example has 10 services. Simi-
lar to the Audible example, we simulate the Netflix mobile
application with a service, here called Client. The services
in the Netflix example are:

• Client: simulates the mobile client;
• API Gateway: assembles a user’s homepage;
• User Profile: returns profile information;
• Bookmarks: returns last viewed locations;
• My List: returns the list of movies in the user’s list;
• User Recs.: returns user recommended movies;
• Ratings: returns ratings for a user;
• Telemetry: records telemetry information;
• Trending: returns trending movies;
• Global Recs.: returns recommended movies.

The list of services we implement come from the multiple
presentations that wewatched fromNetflix; however, in their
presentations, the fallback behavior that they present is just
provided as an example. Therefore, in our implementation,
we made a number of decisions on what the fallbacks should
be that seemed to reflect possible fallback behavior; we don’t
believe a specific fallback matters when testing for bugs; but
rather we just want to implement a reasonable fallback.

Here are two examples of the fallback behavior that we
implement: when Bookmarks are unavailable, load Trending
content instead and an log error to Telemetry; and When
User Recs. are unavailable, load Global Recs.
For the functional test, we have a single functional test

that attempts to load the Netflix homepage for a user. For
the bugs, the Netflix example contains three, that can be
activated with an environment variable.

• Bug #1: Misconfigured timeouts. The User Profile ser-
vice calls the Telemetry service with a timeout of 10 sec-
onds; however, the API Gateway calls the User Profile
service with a 1 second timeout.

• Bug #2: Fallbacks to the same server. If the My List
service is unavailable, the system will retry again.

• Bug #3: Critical services with no fallbacks. The User
Profile service does not have a fallback.

7 Evaluation

In Table 1, we present results from running Filibuster on
the corpus; in the table we shorten Dynamic Reduction to
DR. For faults, we assume that all remote calls can return a
connection error. When a timeout is specified, we consider
timeout exceptions. We also include any service-specific
failures, as determined by our static analysis.

We ran all of our examples on a AWS CodeBuild instance
with 15 GB of memory and 8 vCPUs. At the start of the
Filibuster run, we started all of the services for each exam-
ple, waited for those services to come online and terminated
them at the end of the test. As most of the applications in
the corpus have no side-effects, they seed the system with
values and verify they can be read, so we do not restart the
services in between test executions. However, this option is
available. Given that the cost of the service restart is fixed,
we exclude that cost when comparing the performance of
the system with and without dynamic reduction.

7.1 Tests Generated and Increased Coverage

In order to determine the benefit to developers in identify-
ing resilience issues, we first look at the number of tests
generated by Filibuster and the increase in code coverage.
The “Test Gen/DR Gen” column presents the number of

tests both generated and executed by Filibuster. Since each
example only has a single functional test, these numbers
include that test in the total, as Filibuster must execute the
initial passing functional test first to identify where to inject
failures. In all of the examples containing bugs in the corpus,
the bugs were able to be identified using Filibuster.

The “Coverage After” column shows the increase in state-
ment coverage. By generating the tests that cover possible
failures, we are able to increase coverage of the application.
These numbers only account for functional tests. The gener-
ated tests increase coverage related to error-handling code
not exercised by the unmodified functional test.



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

Example Test Gen/DR Gen Coverage After (%) Time w/DR (s) DR Overhead (ms) TG Overhead (ms)

cinema-1 9/9 (-0) 90.72 (+5.67) 8.83 (+1.16) 0.46 (0.02) 0.60 (0.06)
cinema-2 10/9 (-1) 90.76 (+5.64) 8.81 (+1.15) 0.43 (0.01) 0.64 (0.06)
cinema-3 91/37 (-54) 91.08 (+6.43) 13.21 (+5.54) 34.10 (0.02) 4.09 (0.04)
cinema-4 34/21 (-13) 91.34 (+8.17) 12.11 (+4.23) 3.25 (0.01) 2.31 (0.06)
cinema-5 25/25 (-0) 90.72 (+5.16) 11.17 (+3.51) 2.23 (0.01) 1.57 (0.06)
cinema-6 41/41 (-0) 91.35 (+9.05) 13.99 (+6.28) 5.91 (0.01) 2.57 (0.06)
cinema-7 45/45 (-0) 91.28 (+6.64) 14.41 (+6.71) 6.37 (0.01) 2.71 (0.06)
cinema-8 21/21 (-0) 92.70 (+8.33) 10.47 (+2.88) 1.66 (0.01) 1.37 (0.06)

Audible 69/31 (-38) 96.04 (+12.75) 15.28 (+6.35) 13.35 (0.01) 4.72 (0.06)
Expedia 17/17 (-0) 98.54 (+15.33) 9.87 (+6.35) 1.15 (0.01) 1.06 (0.06)
Mailchimp 135/134 (-1) 98.96 (+11.54) 59.83 (+52.01) 473.48 (0.02) 44.07 (0.32)

Netflix

– no bugs 1606/1603 (-3) 96.31 (+17.25) 513.83 (+504.85) 94566 (0.09) 6748.93 (4.20)
– w/ bugs (#2, #3) 18653/4670 (-13983) 97.38 (+15.67) 2303.84 (+2293.8) 748750 (0.07) 62100.34 (3.32)
– w/ bugs (#1, #2, #3) 18653/4670 (-13983) 97.38 (+15.67) 2363.84 (+2353.8) 744052 (0.07) 60002.91 (3.31)

Table 1. Evaluation results: Filibuster on the corpus. Includes number of generated tests with and without dynamic reduction;
coverage before and after using Filibuster, overhead of dynamic reduction algorithm, and overhead of test generation.

Takeaway: Filibuster was able to prevent developers from
having to write time-consuming mocks by automatically
generating tests that introduce failures at all of the remote
call sites. As demonstrated by the Netflix example, some of
these applications are large enough to require a large num-
ber of tests to properly ensure coverage of the failure space.
For most organizations, manually writing this many tests
without a system to automatically generate these tests would
be expensive in terms of development time. Similarly, the
cost of test adaptation is also low. In the Netflix example, Fil-
ibuster executed 1,606 tests, but required only 9 conditional
assertions to capture all behavior.

Filibuster found all of the bugs in a development setting,
without having to run chaos experiments in a live, production
environment. Recall from Section 2, all of these bugs were
discovered using chaos engineering and were used as use
cases to advocate for the adoption of chaos engineering. Here,
we show chaos engineering can be avoided.

7.2 Dynamic Reduction

The “Test Gen/DR Gen” column shows the benefits of dy-
namic reduction: yellow cells are used to identify impact;
green cells are used to identify significant impact.

Dynamic reduction excels when graphs have more depth
and less breadth. In the Audible example, there are deep
paths containing nested requests that can allow Filibuster
to avoid running redundant test executions. However, in
the Netflix example (without bugs), the graph has a large
breadth with little-to-no depth. In this case, all combinations
of failures have to be tested, as control flow in the application
could be based on a request failure. Furthermore, in the Net-
flix example (with bugs) where deeper paths are introduced
through additional fallback behavior, the benefits of dynamic
reduction become valuable–only 25% of the tests have to be
executed to reach the same failure coverage.

Takeaway:When applications are structured in awaywhere
there is depth over breadth to the service graph, applications
can significantly benefit from dynamic reduction. This oc-
curs because our design can observe the behavior of services
when their dependencies fail earlier in the exploration of
the failure space–this information can be used used to avoid
running subsequent tests where that behavior is already
known. We believe that this insight can guide the design of
microservice architectures to decrease the cost of testing–
deeper service graphs allow for reuse of results across test
executions. This results in reduction of overall test time re-
quired to exhaust the space of possible failures.
7.3 Mocks

As we implemented the corpus, we wrote unit tests for each
service in each example using mocks to account for possi-
ble remote service failures. When writing these tests, we
only tested independent failures. If we look at Figure 2 and
consider the Audible Download Service, we wrote unit tests
each containing a single mock for the failures of the three
dependencies: Ownership, Activation, and Stats. We omit
the list of service specific failures here, and refer the reader
to the diagram for the list; for exceptions, we wrote a mock
for each of the two exceptions: timeout and connection error.
Not only was this process time consuming, from learn-

ing the mocking framework to writing and verifying they
worked correctly, it was a significant amount of additional
code. These failures also under-approximate the actual fail-
ures that could occur in the application: we did not write
mocks that verified all possible combinations of failures. For
example, the failure of both the Stats service and the Asset
Metadata service would require a combination of two mocks
on two different services. As an example of how much code
is required to write these mocks, the implementation of all
Netflix services was 936 LOC. We wrote an additional 743
LOC (+79.3%) of test code to verify failure behavior.



Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Takeaway: Filibuster can be used to verify resilience with-
out the time consuming, ad-hoc and error prone effort of
writing mocks for what failures the developers believe are
possible. Filibuster can automatically generate these tests
withminimal effort and accounts formore complicatedmock-
ing scenarios, where multiple mocks across different services
are required to execute a particular error handling code path.
7.4 Execution Time

The “Time w/DR” column shows the execution time with
dynamic reduction enabled. This column shows the total
execution time for all tests, excluding setup and teardown
time. In parentheses, we present the difference between run-
ning the initial single functional test and running all of the
tests generated by Filibusterİf we compare this difference
to the number of tests both generated and executed with
dynamic reduction, we can see, and is expected, that the
execution time scales linearly with the number of tests that
have to be executed. This per test execution time accounts
for starting a Python interpreter, performing whatever setup
and teardown is required and executing the test.
In the “TG Overhead” column, we present the total over-

head (in milliseconds) for test generation. This test genera-
tion process, running inside the Filibuster server, schedules
new test executions each time a new request is reached and
the Filibuster server learns about this call through the in-
strumentation call from the service. As you can see, this
overhead is very small; in parentheses, we present the over-
head for each test that is generated, which in the worst case
is 3.2 milliseconds. In the “DR Overhead” column, we present
the total overhead (in milliseconds) introduced by the dy-
namic reduction algorithm. This algorithm has to, for each
test that is generated, determine if this test is redundant with
a previous test execution. As we can see, this overhead is
very small; in parentheses, we present the overhead per test,
which in the most complicated examples is 90 microseconds.
Takeaway: Filibuster’s execution time scales linearly with
the number of tests that are generated. However, the test
generation overhead is significantly less than the cost of
the development time required in manually writing these
tests using mocks. Additionally, Filibuster provides higher
coverage by automatically writing mocks for combinations
of failures across service boundaries.
7.5 Misconfigured Timeouts

In order to identify misconfigured timeouts, where Service
A calls to Service B with a timeout that is less than Service
B’s timeout to a Service C, is performed by sleeping the time-
out interval plus 1 additional millisecond, before returning a
Timeout exception. This ensures that we wait at least long
enough to account for the timeout interval. In Figure 1, we
highlight in red the difference in execution time when test-
ing timeouts. In order to identify Netflix bug #1, we have
to execute the timeouts while sleeping the timeout inter-
val. Compared to the execution where we do not introduce

timeouts, we observe a difference in time of the cumulative
timeout interval during testing.
Takeaway: Filibuster can detect incorrectly configured
timeouts at the cost of some additional execution time.

8 Discussion: Limitations and Future Work

Cloud Services. One possible concern with both the cor-
pus and the design and implementation of our prototype,
Filibuster, is that the examples in the corpus replace the
use of real cloud services and databases with HTTP services.
Our corpus, and the bugs contained in the corpus, originally
involved the use of non-HTTP services; for expediency, we
re-implemented those services as HTTP services to evaluate
our prototype. With this change, we were able to evaluate
both our approach and dynamic reduction algorithm with-
out the cost of implementing the instrumentation required
for five additional client libraries. We do not believe this to
be a fundamental or limiting factor of our design. Although
this extension to other client libraries does require additional
effort to put Filibuster into immediate use within an organi-
zation, the style of implementation we use, which is based on
opentelemetry’s instrumentation style, already exists for the
libraries in question. Therefore, we assume that the exten-
sion required to support Filibuster is low-risk, well-defined
engineering work. We have already begun work to extend
our systemwith gRPC support and support for cloud services
such as AWS DynamoDB and AWS RDS.
Nondeterminism. Our design requires that, as we are in-
jecting faults, we are able to re-execute a functional test and
see the same behavior, minus the delta of additional error
handling behavior that might be triggered by the fault. This
implies that tests should be free from both observable sched-
uling and data nondeterminism. In regards to data nondeter-
minism, we assume that service responses are deterministic
and that service code does not contain data dependencies
on previous failures for a single functional test. In short, our
design does not consider the corruption of service responses,
but instead focuses on either the assumed response or a re-
sponse indicating failure.We believe this is a safe assumption
to make, as tests that are not free of nondeterminism would
not be consistently passing prior to fault injection testing.
Precision of Static Analysis. Static analysis necessarily
requires making trade-offs in precision, and in Filibuster
we opt for over-approximation of failures. In some cases,
developers may be prompted to write exception handlers
and other conditional error handling for failures that may
not actually have the possibility of occurring in production.
We feel this is an acceptable trade-off for reducing errors
before they reach production where they may affect users.
False Positives in Timeouts. When testing for misconfig-
ured timeouts, Filibuster executes code that fails with a
timeout to the timeout interval plus an additionalmillisecond.
These milliseconds add up and could produce false positives.
We feel that this is an acceptable trade-off during testing:



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

if a timer interval is close enough that some number of ad-
ditional milliseconds produces a false positive, the timeout
should be increased. A possible workaround, which we leave
as future work, would be to use our instrumentation to track
the timeouts of each call. Taken together with execution
indexes, we would be able to determine whether the aggre-
gate of dependencies’ timeouts exceed the timeout of the
service. This would enable us to verify that timeouts are at
least greater than the sum of their parts.
Breadth vs. Depth in Service Graphs. As it may appear
from the results, graphs like Netflix (without bugs) cannot
take advantage of dynamic reduction; whereas graphs such
as Audible can. The reason for this difference is the structure
of these microservice applications: Audible’s topology has
more depth, whereas as our Netflix example is has a larger
breadth. As we discussed in Section 7.2, the more depth
a service graph has, the more we can reuse results from
previous test executions to perform reduction.

Figure 3. Graph of Netflix topology taken from [23].

Our design is informed by observations from our survey.
First, our examples are only small cuts of larger microservice
applications where we knew enough details to re-implement
in a somewhat realistic manner. If we look at the Expedia
example, we only have reproduced a graph containing 3 ser-
vices that were involved in a single experiment; however,
in their presentation [3] they presented a slide containing
their full service graph; this graph does exhibit the correct
characteristics for our reduction algorithm, having a larger
depth than breadth. Similarly, we present a diagram (Fig-
ure 3) from Netflix [23] where we observe the same type of
graph. Note that these graphs are larger than the examples
in our corpus; in both presentations, many service names
and behaviors have been obfuscated to protect intellectual
property, making it impossible for us to recreate the whole
application faithfully.

9 Related Work

Concolic execution. Our testing algorithm builds on the
DART algorithm, as described in [29]. In the DART algo-
rithm, concrete execution is combined with symbolic—every
time a conditional branch is reached, an additional test exe-
cution is schedule with a negation of a symbolic condition

that allowed the code to reach that branch of the conditional.
Therefore, to generate a test that causes the code to execute
the other branch, a theorem prover is used to synthesize an
input accordingly. In contrast, our work does not require
symbolic execution to generate inputs to hit error error han-
dling branches; we know this through static analysis.

Fuzz testing. RESTler [47] is a fuzzer for web services
that implement REST and use the OpenAPI specification to
describe their REST API. RESTler focuses on identifying
bugs that arise in data dependencies: where the output pro-
duced by one service can trigger the bug in different service
that consumes that output. Similar to Filibuster, RESTler
relies on a lightweight static analysis; however, RESTler per-
forms this over API specifications in order to drive the testing
engine into deep service states. In contrast to Filibuster,
RESTler uses an error response (e.g., 500) to indicate a failed
test; Filibuster will purposefully inject this failure to assert
the application handles it correctly. This is a complimen-
tary approach: we envision that a similar technique could be
combined with SFIT to address data nondeterminism bugs.

Fault injection. There is a long history of fault injection
research. In this section, we compare the most relevant work
with Filibuster. Genesis2, [36] a system for performing
fault injection in service oriented architectures, an early pre-
decessor of microservices, similarly supports arbitrary mes-
sage transformation along with delaying service responses.
In contrast to Filibuster, developers must manually design
the experiments they wish to run. Ferrari [37] simulates
low-level hardware faults by injecting faults in software and
was the first system to identify the benefits of fault injection
on different iterations of loops.
FIG, [24] LFI, [41] and AFEX [21] perform library-level

fault injection. FIG focuses on glibc. LFI first proposed the
idea of using a static analysis on library code for identifying
the possible faults an application should be tested for. While
LFI implements a more advanced analysis (e.g., pointer alias-
ing, binary analysis), the authors rely on over-approximation
in order to avoid missing potential faults. AFEX further ex-
tends LFI with a search prioritization strategy for large ap-
plications where exhaustive search is not possible.
Both Enforcer [20] and ChaosMachine [49] perform

fault injection on the JVM. Enforcer injects checked excep-
tions in order to verify error handling code associated with
exception handlers. Most of the innovation in this tool is
supporting JVM specific exception models. ChaosMachine
injects all throwable exceptions and requires that developers
use test annotations to specify how faults should impact
internal state. In contrast, Filibuster focuses on unchecked,
runtime exceptions and uses the existing functional test suite
to assert observable behavior of the fault.
Fate [30] is a fault injector that abstracts the injected

faults in order to address the state space explosion problem
when exploring combinations of different faults. Its counter-
part,Destini [30] is a declarative specification language over



Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

abstracted system events for writing the system’s behavioral
specification. Similar to Destini, LDFI [19] is an optimized
search strategy that uses a similar declarative specification
language. The challenges of applying LDFI at Netflix (e.g.,
specification language, behavioral specification, determinis-
tic replay) has also been discussed [18]. Filibuster addresses
several of these issues by leveraging the existing functional
test suite to verify resilience during development.
PreFail [35] lets developers inject arbitrary faults and

write custom pruning strategies to reduce test case explosion.
In contrast, Filibuster targets the precise errors that arise
in microservice architectures and provides a default pruning
strategy that exploits the structure of these applications.
Setsudo [34] uses high-level, declarative test specifications
over the system state to drive fault injection. In contrast to
Filibuster, Setsudo requires that developers write these
specifications for the system under test. Gremlin [33], is
a system for programmatic specification and execution of
chaos engineering experiments in microservice architectures.
In contrast to Filibuster, Gremlin requires that developers
manually specify the experiments they want to run.

Model checking. MoDist [47] is a distributed systems
model checker and simulates various network conditions
and machine crashes. MoDist targets interposition at the
WinAPI level for the commonly used API functions in dis-
tributed systems programming. In contrast, Filibuster relies
on manual instrumentation of the libraries used for RPC in
microservice architectures. MoDist supplies a number of
state reduction strategies that can be used to identify dif-
ferent types of bugs, as exhaustive search is not feasible
when injecting multiple failures. While there has been signif-
icant work in addressing this deficiency (e.g., SAMC [39] and
FlyMC [40]), these optimizations typically exploit distributed
system designs where multiple nodes serve as replicas of one
another. In contrast, Filibuster exploits the structure of mi-
croservice applications, a type of distributed application that
is structurally distinct from infrastructure applications (e.g.,
Zookeeper.) Similar to many of the fault injection systems
presented earlier, these model checkers rely on specifica-
tions written over an abstracted system state. In contrast,
Filibuster uses existing functional tests as the test oracle.
ucheck [47] is a model checker and runtime enforcement

system formicroservice applications that identifies sequences
of successful RPC calls that will lead to invariant violations.
In contrast, Filibuster uses existing functional tests as the
test oracle and targets behavior when RPCs fail.

Chaos engineering. Netflix’s CHaP andMonocle [23]
represent the state of the art in chaos engineering. Develop-
ers use instrumented libraries for fault injection, fallbacks
and timeouts are placed in configuration files, and experi-
ments are automatically generated and executed.
Our approach, SFIT, describes the instrumentation re-

quired to perform both fault injection and dynamic reduction,
such that any library for performing remote procedure call

can easily be instrumented where developers would benefit
from this type of testing. At Netflix, developers are required
to use libraries provided by the organization that already
have been instrumented: thereby preventing making it diffi-
cult for a smaller organization to adopt similar practices.
With Monocle, fallback and timeout configuration are

supplied as configuration parameters to Hystrix, the Netflix
fault tolerance framework: this reduces the complexity in-
volved in dynamic binding resolution (which we provide a
solution for) and timeout verification (which, in the case of
Netflix, can be done solely through configuration verification
and does not take compute time into account.) Our approach
provides a solution for identifying these issues in services
that do not specify this through configuration files that can
be analyzed without executing the application.
As discussed by Netflix [5], Monocle was recently dis-

abled because the number of experiments that were sched-
uled to run exceeded what was operationally possible. We
believe that both dynamic reduction and the ability to run
these experiments in the development environment are crit-
ical improvements — bugs can be detected earlier through
local testing and faster through dynamic reduction.

LinkedIn’s LinkedOut [2] lets developers run chaos exper-
iments for front-end applications. LinkedOut has no solu-
tion for experiment selection — developers are left to use a
Chrome-plugin based UI to design their own experiments.

Gremlin, the chaos engineering Software-as-a-Service com-
pany [12] has a product called “application-level fault injec-
tion” that allows developers to inject application-specific
failures (e.g., remote communication libraries.) The project
appears stagnant with no activity since 2018.

10 Conclusion

We presented Filibuster, a prototype implementation of
service-level fault injection testing, an approach for identi-
fying resilience issues in microservice architectures. Fili-
buster enables testing in development, avoiding the need
to run chaos experiments for applications in production.
Filibuster takes advantage of a novel dynamic reduction al-
gorithm that can be used to drastically reduce the number of
tests that need to be run without sacrificing full coverage of
the failure space. To evaluate Filibuster, we re-implemented
components of 4 industry applications from publicly avail-
able presentations and demonstrated that chaos engineering
experiments run in production were able to be reproduced
locally and were able to identify the same bugs.

Acknowledgments

We would like to thank Peter Alvaro, Matt Jacobs, Matt Ran-
ney, the anonymous reviewers, and our shepherd, Sanjay
Rao, for their valuable feedback on this paper. This work is
partially supported by the Amazon Research Awards Pro-
gram and CyLab.



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Meiklejohn et al.

References

[1] 2016. Building Microservices in Python and Flask. https://codeahoy.
com/2016/07/10/writing-microservices-in-python-using-flask. Ac-
cessed: 2021-05-21.

[2] 2018. LinkedOut: A Request-Level Failure Injection Frame-
work. https://engineering.linkedin.com/blog/2018/05/linkedout--a-
request-level-failure-injection-framework. Accessed: 2021-05-21.

[3] 2020. Automating Chaos Attacks at Expedia - Daniel and Nikos. https:
//www.youtube.com/watch?v=xrtbiyfRvb4. Accessed: 2021-05-21.

[4] 2020. Introducing Domain-Oriented Microservice Architecture. https:
//eng.uber.com/microservice-architecture/. Accessed: 2021-05-21.

[5] 2020. Rethinking How the Industry Approaches Chaos Engi-
neering. https://www.infoq.com/presentations/rethinking-chaos-
engineering. Accessed: 2021-05-21.

[6] 2021. Amazon EKS | Managed Kubernetes Service. https://aws.amazon.
com/eks/. Accessed: 2021-05-21.

[7] 2021. Audible. https://www.audible.com. Accessed: 2021-05-21.
[8] 2021. docker. https://www.docker.com/. Accessed: 2021-05-21.
[9] 2021. Expedia. https://www.expedia.com. Accessed: 2021-05-21.
[10] 2021. Filibuster. http://filibuster.cloud. Accessed: 2021-09-07.
[11] 2021. Flask web framework. https://flask.palletsprojects.com/en/2.0.x/.

Accessed: 2021-05-21.
[12] 2021. Gremlin. http://www.gremlin.com. Accessed: 2021-05-21.
[13] 2021. Mailchimp. https://www.mailchimp.com. Accessed: 2021-05-21.
[14] 2021. minikube. https://minikube.sigs.k8s.io/docs/. Accessed: 2021-

05-21.
[15] 2021. Netflix. https://www.netflix.com. Accessed: 2021-05-21.
[16] 2021. Online Boutique. https://github.com/GoogleCloudPlatform/

microservices-demo. Accessed: 2021-05-21.
[17] 2021. Sock Shop: A Microservices Demo Application. https://

microservices-demo.github.io. Accessed: 2021-05-21.
[18] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri,

and Lorin Hochstein. 2016. Automating Failure Testing Research
at Internet Scale. In Proceedings of the Seventh ACM Symposium on
Cloud Computing (Santa Clara, CA, USA) (SoCC ’16). Association for
Computing Machinery, New York, NY, USA, 17–28. https://doi.org/
10.1145/2987550.2987555

[19] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-
Driven Fault Injection. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New
York, NY, USA, 331–346. https://doi.org/10.1145/2723372.2723711

[20] Cyrille Artho, Armin Biere, and Shinichi Honiden. 2006. Exhaustive
Testing of Exception Handlers with Enforcer. In Proceedings of the
5th International Conference on Formal Methods for Components and
Objects (Amsterdam, The Netherlands) (FMCO’06). Springer-Verlag,
Berlin, Heidelberg, 26–46.

[21] Radu Banabic and George Candea. 2012. Fast Black-Box Testing of
System Recovery Code. In Proceedings of the 7th ACM European Con-
ference on Computer Systems (Bern, Switzerland) (EuroSys ’12). As-
sociation for Computing Machinery, New York, NY, USA, 281–294.
https://doi.org/10.1145/2168836.2168865

[22] Phiradet Bangcharoensap, Akinori Ihara, Yasutaka Kamei, and Ken-
ichi Matsumoto. 2012. Locating Source Code to Be Fixed Based on
Initial Bug Reports - A Case Study on the Eclipse Project. In 2012
Fourth International Workshop on Empirical Software Engineering in
Practice. 10–15. https://doi.org/10.1109/IWESEP.2012.14

[23] Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. 2019. Au-
tomating Chaos Experiments in Production. In Proceedings of the 41st
International Conference on Software Engineering: Software Engineering
in Practice (Montreal, Quebec, Canada) (ICSE-SEIP ’19). IEEE Press,
31–40. https://doi.org/10.1109/ICSE-SEIP.2019.00012

[24] Pete Broadwell, Naveen Sastry, and Jonathan Traupman. 2002. FIG:
A prototype tool for online verification of recovery mechanisms. In

Workshop on Self-Healing, Adaptive and Self-Managed Systems. Cite-
seer.

[25] Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of Bug
Localization Benchmarks from History. In Proceedings of the Twenty-
Second IEEE/ACM International Conference on Automated Software Engi-
neering (Atlanta, Georgia, USA) (ASE ’07). Association for Computing
Machinery, New York, NY, USA, 433–436. https://doi.org/10.1145/
1321631.1321702

[26] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An ex-
tensive comparison of bug prediction approaches. In 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR 2010). 31–41.
https://doi.org/10.1109/MSR.2010.5463279

[27] C. Fidge. 1991. Logical time in distributed computing systems. Com-
puter 24, 8 (1991), 28–33. https://doi.org/10.1109/2.84874

[28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-
rected Automated Random Testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Chicago, IL, USA) (PLDI ’05). Association for Computing
Machinery, New York, NY, USA, 213–223. https://doi.org/10.1145/
1065010.1065036

[29] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-
rected Automated Random Testing. SIGPLAN Not. 40, 6 (June 2005),
213–223. https://doi.org/10.1145/1064978.1065036

[30] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. 2011. FATE and DESTINI: A
Framework for Cloud Recovery Testing. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation
(Boston, MA) (NSDI’11). USENIX Association, USA, 238–252.

[31] T. Gyimothy, R. Ferenc, and I. Siket. 2005. Empirical validation of
object-oriented metrics on open source software for fault prediction.
IEEE Transactions on Software Engineering 31, 10 (2005), 897–910. https:
//doi.org/10.1109/TSE.2005.112

[32] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. 2014. Some Code
Smells Have a Significant but Small Effect on Faults. ACM Trans.
Softw. Eng. Methodol. 23, 4, Article 33 (Sept. 2014), 39 pages. https:
//doi.org/10.1145/2629648

[33] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K.
Reiter, and Vyas Sekar. 2016. Gremlin: Systematic Resilience Testing of
Microservices. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). 57–66. https://doi.org/10.1109/ICDCS.
2016.11

[34] Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and
Nadia Papakonstantinou. 2013. SETSUDundefined: Perturbation-Based
Testing Framework for Scalable Distributed Systems. In Proceedings of
the First ACM SIGOPS Conference on Timely Results in Operating Systems
(Farmington, Pennsylvania) (TRIOS ’13). Association for Computing
Machinery, New York, NY, USA, Article 7, 14 pages. https://doi.org/
10.1145/2524211.2524217

[35] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. 2011. PREFAIL: A
Programmable Tool for Multiple-Failure Injection. In Proceedings of the
2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications (Portland, Oregon, USA) (OOP-
SLA ’11). Association for Computing Machinery, New York, NY, USA,
171–188. https://doi.org/10.1145/2048066.2048082

[36] Lukasz Juszczyk and Schahram Dustdar. 2010. Programmable Fault
Injection Testbeds for Complex SOA. In Service-Oriented Computing,
Paul P. Maglio, MathiasWeske, Jian Yang, andMarcelo Fantinato (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 411–425.

[37] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. 1995. FERRARI: a
flexible software-based fault and error injection system. IEEE Trans.
Comput. 44, 2 (1995), 248–260. https://doi.org/10.1109/12.364536

[38] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. 1994.
A Note on Distributed Computing. Technical Report. USA.

https://codeahoy.com/2016/07/10/writing-microservices-in-python-using-flask
https://codeahoy.com/2016/07/10/writing-microservices-in-python-using-flask
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
https://www.youtube.com/watch?v=xrtbiyfRvb4
https://www.youtube.com/watch?v=xrtbiyfRvb4
https://eng.uber.com/microservice-architecture/
https://eng.uber.com/microservice-architecture/
https://www.infoq.com/presentations/rethinking-chaos-engineering
https://www.infoq.com/presentations/rethinking-chaos-engineering
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://www.audible.com
https://www.docker.com/
https://www.expedia.com
http://filibuster.cloud
https://flask.palletsprojects.com/en/2.0.x/
http://www.gremlin.com
https://www.mailchimp.com
https://minikube.sigs.k8s.io/docs/
https://www.netflix.com
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://microservices-demo.github.io
https://microservices-demo.github.io
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1109/IWESEP.2012.14
https://doi.org/10.1109/ICSE-SEIP.2019.00012
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1109/2.84874
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1145/2629648
https://doi.org/10.1145/2629648
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1145/2524211.2524217
https://doi.org/10.1145/2524211.2524217
https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1109/12.364536


Service-Level Fault Injection Testing SoCC ’21, November 1–4, 2021, Seattle, WA, USA

[39] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.
Lukman, and Haryadi S. Gunawi. 2014. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (Broomfield, CO) (OSDI’14). USENIX Association,
USA, 399–414.

[40] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Da-
niar H. Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,
Feng Ye, Tanakorn Leesatapornwongsa, Aarti Gupta, Shan Lu, and
Haryadi S. Gunawi. 2019. FlyMC: Highly Scalable Testing of Complex
Interleavings in Distributed Systems. In Proceedings of the Fourteenth
EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association
for Computing Machinery, New York, NY, USA, Article 20, 16 pages.
https://doi.org/10.1145/3302424.3303986

[41] Paul D. Marinescu and George Candea. 2009. LFI: A practical and
general library-level fault injector. In 2009 IEEE/IFIP International Con-
ference on Dependable Systems Networks. 379–388. https://doi.org/10.
1109/DSN.2009.5270313

[42] Friedemann Mattern. 1988. Virtual Time and Global States of Dis-
tributed Systems. In PARALLEL AND DISTRIBUTED ALGORITHMS.
North-Holland, 215–226.

[43] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems
into Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https:
//doi.org/10.1145/361598.361623

[44] H. Tucker, L. Hochstein, N. Jones, A. Basiri, and C. Rosenthal. 2018.
The Business Case for Chaos Engineering. IEEE Cloud Computing 5,
03 (may 2018), 45–54. https://doi.org/10.1109/MCC.2018.032591616

[45] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Mas-
similiano Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015.
When and Why Your Code Starts to Smell Bad. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. 403–414.
https://doi.org/10.1109/ICSE.2015.59

[46] Bin Xin, William N. Sumner, and Xiangyu Zhang. 2008. Efficient
Program Execution Indexing. SIGPLAN Not. 43, 6 (June 2008), 238–248.
https://doi.org/10.1145/1379022.1375611

[47] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,
Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou.
2009. MODIST: Transparent Model Checking of Unmodified Dis-
tributed Systems. In 6th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 09). USENIX Association, Boston,
MA. https://www.usenix.org/conference/nsdi-09/modist-transparent-
model-checking-unmodified-distributed-systems

[48] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple
Testing Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-Intensive Systems. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomfield, CO, 249–265. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/yuan

[49] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry, and Martin
Monperrus. 2019. A Chaos Engineering System for Live Analysis and
Falsification of Exception-handling in the JVM. IEEE Transactions on
Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.
2954871

[50] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan
Ding. 2021. Fault Analysis and Debugging of Microservice Systems:
Industrial Survey, Benchmark System, and Empirical Study. IEEE
Transactions on Software Engineering 47, 2 (2021), 243–260. https:
//doi.org/10.1109/TSE.2018.2887384

[51] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Pre-
dicting Defects for Eclipse. In Third International Workshop on Predictor
Models in Software Engineering (PROMISE’07: ICSE Workshops 2007).
9–9. https://doi.org/10.1109/PROMISE.2007.10

https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1109/DSN.2009.5270313
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/MCC.2018.032591616
https://doi.org/10.1109/ICSE.2015.59
https://doi.org/10.1145/1379022.1375611
https://www.usenix.org/conference/nsdi-09/modist-transparent-model-checking-unmodified-distributed-systems
https://www.usenix.org/conference/nsdi-09/modist-transparent-model-checking-unmodified-distributed-systems
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://doi.org/10.1109/TSE.2019.2954871
https://doi.org/10.1109/TSE.2019.2954871
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/PROMISE.2007.10

	Abstract
	1 Introduction
	2 Research Challenges and Process
	3 Service-level Fault Injection Testing
	3.1 SFIT Approach

	4 Dynamic Reduction
	5 Prototype Implementation: Filibuster
	6 Application Corpus
	6.1 Cinema Examples
	6.2 Industry Examples

	7 Evaluation
	7.1 Tests Generated and Increased Coverage
	7.2 Dynamic Reduction
	7.3 Mocks
	7.4 Execution Time
	7.5 Misconfigured Timeouts

	8 Discussion: Limitations and Future Work
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

