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Abstract
We propose Lasp, a new programming model designed to sim-
plify large-scale distributed programming. Lasp combines ideas
from deterministic dataflow programming together with conflict-
free replicated data types (CRDTs). This provides support for com-
putations where not all participants are online together at a given
moment. The initial design presented here provides powerful prim-
itives for composing CRDTs, which lets us write long-lived fault-
tolerant distributed applications with nonmonotonic behavior in a
monotonic framework. Given reasonable models of node-to-node
communications and node failures, we prove formally that a Lasp
program can be considered as a functional program that supports
functional reasoning and programming techniques. We have im-
plemented Lasp as an Erlang library built on top of the Riak Core
distributed systems framework. We have developed one nontrivial
large-scale application, the advertisement counter scenario from the
SyncFree research project. We plan to extend our current prototype
into a general-purpose language in which synchronization is used
as little as possible.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Dis-
tributed data structures

Keywords Eventual Consistency, Commutative Operations, Er-
lang

1. Introduction
Synchronization of data across systems is becoming increasingly
expensive and impractical when running at the scale required by
“Internet of Things” [29] applications and large online mobile
games.1 Not only does the time required to coordinate with an ever
growing number of clients increase with each additional client, but
techniques that rely on coordination of shared state, such as Paxos
and state-machine replication, grow in complexity with partial
replication, dynamic membership, and unreliable networks. [14]

This is further complicated by an additional requirement for
both of these applications: each must tolerate periods without con-
nectivity while allowing local copies of replicated state to change.
For example, mobile games should allow players to continue to ac-
cumulate achievements or edit their profile while they are riding in
the subway without connectivity; “Internet of Things” applications
should be able to aggregate statistics from a power meter during a
snowstorm when connectivity is not available, and later synchro-
nize when connectivity is restored. Because of these requirements,

1 Rovio, developer of the popular “Angry Birds” game franchise reported
that during the month of December 2012 they had 263 million active users.
This does not account for users who play the game on multiple devices,
which is an even larger number of devices requiring some form of shared
state in the form of statistics, metrics, or leaderboards. [3]

the burden is placed on the programmer of these applications to en-
sure that concurrent operations performed on replicated data have
both a deterministic and desirable outcome.

For example, consider the case where a user’s gaming profile
is replicated between two mobile devices. Concurrent operations,
which can be thought of as operations performed during the period
where both clients are online but without communication, can mod-
ify the same state: the burden is placed on the application developer
to write application logic that resolves these conflicting updates.
This is true even if the changes commute: for instance, concurrent
modifications to the user profile where client A modifies the profile
photo and client B modifies the profile’s e-mail address.

Recently, a formalism has been proposed by Shapiro et al. for
supporting deterministic resolution of individual objects that are
acted upon concurrently in a distributed system. These data types,
referred to as Conflict-Free Replicated Data Types (CRDTs), pro-
vide a property formalized as Strong Eventual Consistency: given
all updates to an object are eventually delivered in a distributed
system, all copies of that object will converge to the same state.
[32, 33]

Strong Eventual Consistency (SEC) results in deterministic res-
olution of concurrent updates to replicated state. This property is
highly desirable in a distributed system because it no longer places
the resolution logic in the hands of the programmer; programmers
are able to use replicated data types that function as if they were
their sequential counterparts. However, it has been shown that arbi-
trary composition of these data types is nontrivial. [6, 13, 15, 26]

To achieve this goal, we propose a novel programming model
aimed at simplifying correct, large-scale, distributed programming,
called Lasp.2 This model provides the ability to use operations from
functional programming to deterministically compose CRDTs into
larger computations that observe the SEC property; these applica-
tions support programming with data structures whose values ap-
pear nonmonotonic externally, while computing internally with the
objects’ monotonic metadata. This model builds on our previous
work, Derflow and DerflowL [12, 27], which provide a distributed,
fault-tolerant variable store powering a deterministic concurrency
programming model.

This paper has the following contributions:

• Formal semantics: We provide the formal semantics for Lasp:
the monotonic read operation; functional programming opera-
tions over sets, including map, filter, and fold; and set-theoretic
operations, including product, union, and intersection.
• Formal theorem: We formally prove that a distributed exe-

cution of a Lasp program can be considered a functional pro-

2 Inspired by LISP’s etymology of “LISt Processing”, our fundamental data
structure is a join-semilattice, hence Lasp.
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gram that supports functional reasoning and programming tech-
niques.
• Prototype implementation: We provide a prototype imple-

mentation [1] of Lasp, implemented as an Erlang library using
the Riak Core [22] distributed systems framework.
• Initial evaluation: We perform an initial evaluation of Lasp

by prototyping the eventually consistent advertisement counter
scenario from the SyncFree project [4] and improve on the
design of the Bloom KVS presented by Conway et al. [15]

This paper is an extension of the previously published work-in-
progress report on Lasp [28] and is structured as follows: Section 2
motivates the need for Lasp. Section 3 defines Lasp’s semantics
and operations. Section 4 defines and proves the fundamental the-
orem of Lasp execution. Section 5 explains the implementation of
our prototype. Section 6 evaluates the expressiveness of our proto-
type by showing how to implement two nontrivial distributed ap-
plications. Section 7 explains how Lasp is related to other work on
models and languages for distributed programming. Section 8 out-
lines the extensions that we are planning for the Lasp prototype.
Section 9 gives a brief conclusion.

2. Motivation
In this section, we motivate the need for Lasp.

2.1 Conflict-Free Replicated Data Types
Conflict-Free Replicated Data Types [32, 33] (CRDTs) are dis-
tributed data types that are designed to support temporary diver-
gence at each replica, while guaranteeing that once all updates are
delivered to all replicas of a given object they will converge to the
same state. There are CRDT designs for commonly used sequential
data types: counters, registers, sets, flags, dictionaries, and graphs;
however, each of these data structures, while guaranteeing to con-
verge, will observe a predetermined bias on how to handle concur-
rent operations, given that behavior is undefined in its sequential
counterpart.
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Figure 1: Example of divergence due to concurrent operations on
replicas of the same object. In this case, it is unclear which update
should win when replicas eventually communicate with each other.

We provide an example in Figure 1. In this example, concurrent
operations on a replicated register result in divergence at each
replica: replica A (RA) is set to the value 2 whereas replica B (RB)
is set to the value 3. How do we reconcile this divergence?

Two major strategies have been used in practice by several pro-
duction databases [18, 25]: “Last-Writer-Wins”, where the last ob-
ject written based on wall clock time wins, or “Semantic Resolu-
tion” where both updates are stored at each replica, and the burden
of resolving the divergence is placed on the developer.

Both of these strategies have deficiencies:

• “Last-Writer-Wins” ultimately results in some valid operations
being dropped during merge operations based solely on the
scheduling of operations.

• “Semantic Resolution” places the burden on the application
developer to provide a deterministic merge function.3

CRDTs solve this problem by formalizing a series of data types
that fulfill two major goals: capturing causal information about
updates that have contributed to their current state, and providing
a deterministic merge operation for combining the state across
multiple replicas.

Figure 2 shows one possible way to define a merge function
that is deterministic regardless of ordering of messages: if we
take advantage of the order of natural numbers using the max
operation, we ensure that all replicas will eventually converge to
a correct, equivalent state once they have observed all updates.
While this is one very simple example of a distributed data structure
with a deterministic merge function, Shapiro et al. outline different
designs for registers, sets, counters, and graphs [33].

We will now formalize the Observed-Remove Set CRDT to
explore problems of composition with CRDTs that have visible
nonmonotonic behavior.
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Figure 2: Example of resolving concurrent operations with a type of
state-based CRDT based on a natural number lattice where the join
operation computes max.

2.2 Observed-Remove Set CRDT
We take a moment to introduce the Observed-Remove Set CRDT
(OR-Set), which will be used as the basis for the formalisms in
this paper. We focus on the OR-Set because it is the least complex
CRDT which serves as a general building block for applications.4

We start with a description of lattices, which are used as the
basis of state-based CRDTs, one of the two major types of CRDTs.

Definition 2.1. A bounded join-semilattice is a partially ordered
set that has a binary operation called the join . The join is associa-
tive, commutative, and idempotent, and induces a partial order over
a nonempty finite subset such that the result given any two elements
is the least upper bound of the input with respect to the partial order.
The semilattice is bounded, as it contains a least element. [16]

Definition 2.2. A replicated triple (S,M,Q) where S is a bounded
join-semilattice representing the state of each replica, M is a set of
functions for mutating the state, and Q is a set of functions for
querying the state, is one type of state-based CRDT. [5]

Functions for querying and mutating the CRDT can always be
performed as they are executed on the replica’s local state and
the entire state is propagated to other replicas in the replica set.
When a replica receives a state from another replica, the received

3 When described by DeCandia et al. in 2007 [18], this mechanism results
in “concurrency anomalies”, where updates seem to reappear due to con-
current operations in the network; this is the main focus of the the CRDT
work as presented by Shapiro et al. in [32, 33].
4 For instance, the Grow-Only Set (G-Set) does not allow removals, the
Two-Phase Set (2P-Set) only allows one removal of a given item, and the
OR-Set Without Tombstones (ORSWOT) adds additional complexity in the
form of optimizations, which lie outside of the core semantics.
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state is merged into the local state using the join operation. Given
the algebraic properties of the join operation, once updates stop
being issued, a join across all replicas produces equivalent state;
the merge function is deterministic given a finite set of updates.

Mutations at a given replica always return a monotonically
greater state as defined by the partial order of the lattice, therefore
any subsequent state always subsumes a previous state. We refer to
these mutations as inflations.

Definition 2.3. A stream s is an infinite sequence of states of
which only a finite prefix of length n is known at any given time.

s = [si | i ∈ N] (1)

The execution of one CRDT replica is represented by a stream
of states, each of which is an element of the lattice S. The execution
of a full CRDT instance with n replicas is represented by n streams.

Definition 2.4. Updates performed on a given state are inflations;
for any mutation, the state generated from the mutation will always
be strictly greater than the state generated by the previous mutation.

m ∈M ∧ si ∈ S ∧ si v m(si) (2)

The Observed-Remove Set CRDT models arbitrary nonmono-
tonic operations, such as additions and removals of the same ele-
ment, monotonically in order to guarantee convergence with con-
current operations at different replicas.

Definition 2.5. The Observed-Remove Set (OR-Set) is a state-
based CRDT whose bounded join-semilattice is defined by a set of
triples, where each triple has one value v, and extra information
(called metadata) in the form of an add set a and a remove set r.
At most one triple may exist for each possible value of v.

si = {(v, a, r), (v′, a′, r′), . . .} (3)

The OR-Set has two mutations, add and remove. The metadata
is used to implement both mutations monotonically.

Definition 2.6. The add function on an OR-Set generates a unique
constant u for each invocation. Given this constant, add u to the
add set a for value v, if the value already exists in the set, or add a
new triple containing v, an add set {u} and a remove set {}.
add(si, v) = si − {(v, , )}

∪ {(v, a ∪ {u}, r) | (v, a, r) ∈ si ∧ u = unique()}
∪ {(v, {u}, {}) | ¬(v, , ) ∈ si ∧ u = unique()}

(4)

Definition 2.7. The remove function on an OR-Set for value v
unions all values in the add set for value v into the remove set for
value v.
remove(si, v) = si − {(v, , )} ∪ {(v, a, a ∪ r) | (v, a, r) ∈ si}

(5)

The OR-Set has one query function that returns the current
contents of the set: query.

Definition 2.8. The query function for an OR-Set returns values
which are currently present in the set. Presence of a value v in a
given state si is determined by comparison of the remove set r
with the add set a. If the remove set r is a proper subset of the add
set a, the value v is present in the set.

query(si) = {v | (v, a, r) ∈ si ∧ r ⊂ a} (6)

The Observed-Remove Set is one instance of a CRDT that has
a query function that is nonmonotonic: the data structure allows
arbitrary additions and removals of elements in a set. It is impor-
tant to distinguish between the external representation of the set
(the output of a query, which is nonmonotonic) and the internal

representation (the result of add and remove operations, which are
monotonic).

2.3 Composition
The convergence properties of CRDTs are highly desirable for
computation in distributed systems: these data structures are re-
silient to update reordering, duplication, and message delays, all
of which are very relevant problems for computation on an unre-
liable asynchronous network. However, these convergence proper-
ties only hold for individual replicated objects and do not extend to
computations that compose more than one CRDT.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}

(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

F(RA) {2} ?{}

F(RB) {2} {2}

add(1) remove(1)

add(1)

Figure 3: Example of CRDT composition. In this example, there
are two replicas of a CRDT, RA and RB; a function F , defined
as λx.2x, is applied to each element in the set at each replica
using the map function. Without properly mapping the metadata, the
convergence property does not hold for the result of the function
application.

In Figure 3, we see an example where the internal state of both
replicas A and B (RA and RB) allows us to reason about state that
reflects visible nonmonotonic behavior, additions and removals of
the same element, by modeling the state changes monotonically.
However, if we apply a function to the external representation of
the value then we sacrifice the convergence property.

This example describes a case where the output of a function F ,
defined as λx.2x, applied to each element at replica A (F (RA)) us-
ing the map function receives state from the same function applied
to the elements at replica B (F (RB)). It is unclear how to merge
the incoming state given we can not determine if the incoming state
has been previously observed or not.5

3. Lasp
We now present the API and semantics of Lasp, a programming
model designed for building convergent computations by compos-
ing CRDTs.

3.1 API
Lasp’s programming model is provided as a library in the Erlang
programming language. This library implements the core semantics
of Lasp and provides a distributed runtime for executing Lasp
applications. The primary data type of Lasp is the CRDT. Given
a CRDT instance of type t, the Lasp API is designed as follows:

5 Technically, in this naive mapping the state and value are the same.
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1 %% Create initial set S1.
2 {ok, S1} = lasp:declare(riak_dt_orset),
3

4 %% Add elements to initial set S1 and update.
5 {ok, _} = lasp:update(S1, {add_all, [1,2,3]}, a),
6

7 %% Create second set S2.
8 {ok, S2} = lasp:declare(riak_dt_orset),
9

10 %% Apply map operation between S1 and S2.
11 {ok, _} = lasp:map(S1, fun(X) -> X * 2 end, S2).

Figure 4: Map function applied to an OR-Set using the Erlang API
of our Lasp prototype. We ignore the return values of the functions,
given the brevity of the example.

Core API Core functions are responsible for defining variables,
setting their values and reading the result of variable assignments.

• declare(t): Declare a variable of type t.6

• bind(x, v): Assign value v to variable x. If the current value of
x is w, this assigns the join of v and w to x.
• update(x, op, a): Apply op to x identified by constant a.
• read(x, v): Monotonic read operation; this operation does not

return until the value of x is greater than or equal to v in the
partial order relation induced over x at which time the operation
returns the current value of x.
• strict read(x, v): Same as read(x, v) except that it waits until

the value of x is strictly greater than v.

Functional Programming API Functional programming primi-
tives define processes that never terminate; each process is respon-
sible for reading subsequent values of the input and writing to the
output. Figure 4 shows use of the map function.

• map(x, f, y): Apply function f over x into y.
• filter(x, p, y): Apply filter predicate p over x into y.
• fold(x, op, y): Fold values from x into y using operation op.

Set-Theoretic API Set-theoretic functions define processes that
never terminate; each process is responsible for reading subsequent
values of the input and writing to the output.

• product(x, y, z): Compute product of x and y into z.
• union(x, y, z): Compute union of x and y into z.
• intersection(x, y, z): Compute intersection of x and y into z.

3.2 Processes
The previously introduced Lasp operations, functional and set-
theoretic, create processes that connect all replicas of two or more
CRDTs. Each process tracks the monotonic growth of the internal
state at each replica and maintains a functional semantics between
the state of the input and output instances. Each process correctly
transforms the internal metadata of the input CRDTs to compute
the correct mapping of value and metadata for the output CRDT.7

For example, the Lasp map operation can be used to connect two
instances of the Observed-Remove Set CRDT.

In the map example seen in Figure 4, whenever an element e is
added or removed from the input set, the mapped version f(e) is

6 Given the Erlang programming library does not have a rich type system, it
is required to declare CRDTs with an explicit type at initialization time.
7 The internal metadata of each CRDT is responsible for ensuring correct
convergence; the transformation is therefore required to be deterministic.

correctly added or removed from the output set. The other opera-
tions provided by Lasp are analogous: the user visible behavior is
the normal result of the functional or set-theoretic function.

3.3 Variables
As we will prove in Section 4, each state-based CRDT in Lasp has
the appearance of a single state sequence that evolves monotoni-
cally over time as update operations are issued; this is similar to the
definition of inflation provided earlier (Definition 2.4). The current
state of the CRDT is stored in a variable; successive values of the
variable form the CRDT’s state sequence.

We now formally define variables in Lasp and invariants the
Lasp system preserves for each variable.

3.4 Monotonic Read
The monotonic read operation ensures that read operations always
read an equivalent or greater value when provided with the result of
a previous read. This behavior is very important to our system when
dealing with replicated data to ensure forward progress. Consider
the following example:

• Variable a is replicated three times, on three nodes: a1, a2, a3.
• Application reads variable a from replica a1.
• Application modifies replica a1; state is then asynchronously

propagated to replicas a2 and a3.
• Application reads variable a from replica a2, because replica
a1 is temporarily unreachable.

In this example, it is possible for replica a2 to temporarily have
previous state than replica a1, given message delays, failures, and
asynchronous replication.8 The monotonic read operation ensures
that the read will not complete until an equivalent or greater state
as defined over the partial order for a’s lattice is available at a given
replica based on a trigger value.

Formally, we define the monotonic read operations as follows:

Definition 3.1. The monotonic read operation defines a process
that reads the known elements of the input stream s and waits until
some si is equal to or monotonically greater than se. At this point,
si is returned.

read(s, se) = ∃i. si ∈ s ∧ se v si
[tj | tj = (j ≥ i⇒ si;⊥)]

(7)

We also provide a strict version of the monotonic read oper-
ation, which does not return until a strict inflation of a previous
read has been observed. This allows us to build recursive functions,
such as our functional programming operations and set-theoretic
operations, in terms of tail-recursive processes which continuously
observe increasing state.

We define the strict version of the monotonic read operation as
follows:

Definition 3.2. The monotonic strict read operation defines a
process that reads the known elements of the input stream s and
waits until some si is monotonically greater than se. At this point,
si is returned.9

strict read(s, se) = ∃i. si ∈ s ∧ se @ si

[tj | tj = (j ≥ i⇒ si;⊥)]
(8)

8 This is a core idea behind eventual consistency and replication strategies
such as optimistic replication. Eventually consistent systems ensure updates
are eventually visible (i.e., in finite time), but make no guarantees about
when the updates will be visible. [18, 31]
9 This waits for a strict inflation in the lattice, as opposed to an inflation,
which triggers when the value does not change.

4 2015/7/23



3.5 Functional Programming
We now look at the semantics for functional programming primi-
tives that are lifted to operate over CRDTs: map, filter, and fold.
We formalize them as follows:

Definition 3.3. The map function defines a process that never
terminates, which reads elements of the input stream s and creates
elements in the output stream t. For each element, the value v is
separated from the metadata, the function f is applied to the value,
and new metadata is attached to the resulting value f(v). If two
or more values map to the same f(v) (for instance, if the function
provided to map is surjective), the metadata is combined into one
triple for all values of v.

F (si, f) = {f(v) | (v, , ) ∈ si}

A(si, f, w) =
⋃
{a | (v, a, ) ∈ si ∧ w = f(v)}

R(si, f, w) =
⋃
{r | (v, , r) ∈ si ∧ w = f(v)}

map′(si, f) = {(w,A(si, f, w), R(si, f, w)) | w ∈ F (si, f)}
map(s, f) = t = [map′(si, f) | si ∈ s]

(9)

Figure 4 provides an example of applying the map function to
an OR-Set. In this example, the user does not need to know the
internal data structure of each CRDT, but only the nonmonotonic
external representation, as the Lasp runtime handles the metadata
mapping automatically.

Definition 3.4. The filter function defines a process that never
terminates, which reads elements of the input stream s and creates
elements in the output stream t. Values for which p(v) does not
hold are removed by a metadata computation, to ensure that the
filter is a monotonic process.

filter ′(si, p) = {(v, a, r) | (v, a, r) ∈ si ∧ p(v)}
∪ {(v, a, a ∪ r) | (v, a, r) ∈ si ∧ ¬p(v)}

filter(s, p) = t = [filter ′(si, p) | si ∈ s]
(10)

Definition 3.5. The fold function defines a process that never
terminates, which reads elements of the input stream s and cre-
ates elements in the output stream t. Given query(si) = V =
{v0, ..., vn−1} and an operation op of t’s type with neutral element
e, this should return the state ti = e op v0 op v1 · · · op vn−1. If
remove(vk) is done on si, then vk is removed from V , so vk must
be removed from this expression in order to calculate ti+1. The dif-
ficulty is that this must be done through a monotonic update of ti’s
metadata. We present a correct but inefficient solution below; we
are actively working on more efficient solutions.

fold ′(si, op) = Op(v,a,r)∈si(Opu∈av op Op′u∈rv)

fold(s, op) = t = [fold ′(si, op) | si ∈ s]
(11)

This solution assumes that op is associative, commutative, and has
an inverse denoted by op′. Note that the elements u of a are not
used directly; they serve only to ensure that the operation op(v) is
repeated |a| times (and analogously for op′(v) which is repeated
|r| times). Since a and r grow monotonically, it is clear that the
computation of fold ′(si, op) also grows monotonically.

3.6 Set-Theoretic Functions
We now look at the semantics for the set-theoretic functions that are
lifted to operate over CRDTs: product, union, and intersection.
We formalize them as follows:

Definition 3.6. The product function defines a process that never
terminates, which reads elements of the input streams s and u,
and creates elements in the output stream t. A new element is

created on t for each new element read on either s and u. Metadata
composition ensures that if vs is removed from s or vu is removed
from u, then all pairs containing vs or vu are removed from t.10

product ′(si, uj) = {((v, v′), a× a′, a× r′ ∪ r × a′)
| (v, a, r) ∈ si, (v′, a′, r′) ∈ uj}

product(s, u) = t = [product ′(si, uj) | si ∈ s, uj ∈ u]
(12)

Definition 3.7. The union function defines a process that never
terminates, which reads elements of the input streams s and u, and
creates elements in the output stream t. A new element is created
on t for each new element read on either s or u. We combine
the metadata for elements that exist in both inputs, similar to the
definition of the map operation.

un1(si, uj) = {(v, a, r) | (v, a, r) ∈ si ⊕ (v, a, r) ∈ uj}
un2(si, uj) = {(v, a ∪ a′, r ∪ r′) | (v, a, r) ∈ si, (v, a′, r′) ∈ uj}
union(s, u) = t = [un1(si, uj) ∪ un2(si, uj) | si ∈ s, uj ∈ u]

(13)

Definition 3.8. The intersection function defines a process that
never terminates, which reads elements of the input streams s and
u, and creates elements in the output stream t. A new element is
created on t for each new element read on either s and u. We
combine the metadata such that only elements that are in both s
and u appear in the output.

inter ′(si, uj) = {(v, a× a′, a× r′ ∪ r × a′)
| (v, a, r) ∈ si, (v, a′, r′) ∈ uj}

intersection(s, u) = t = [inter ′(si, uj) | si ∈ s, uj ∈ u]
(14)

4. Fundamental Theorem of Lasp Execution
How easy is programming in Lasp? Can it be as easy as program-
ming in a non-distributed language? Is it possible to ignore the
replica-to-replica communication and distribution of CRDTs? Be-
cause of the strong semantic properties of CRDTs, it turns out that
this is indeed possible. In this section we formalize the distributed
execution of a Lasp program and we prove that there is a centralized
execution, i.e., a single sequence of states, that produces the same
result as the distributed execution. This allows us to use the same
reasoning and programming techniques as centralized programs.

The programmer can reason about instances of CRDTs as
monotonic data structures linked by monotonic functions, which
is a form of deterministic dataflow programming. It has the good
properties of functional programming (e.g., confluence and refer-
ential transparency) in a concurrent setting.11

4.1 Formal Definition of a CRDT Instance
We provide a formal definition of a CRDT instance and its dis-
tributed execution. For reasons of clarity, we borrow the notations
of the original report on CRDTs [32].

Notation for Replication and Method Executions Assume a
replicated object with n replicas and one state per replica. We
use the notation ski for the state of replica i after k method execu-
tions. The vector (sk0

0 , · · · , skn−1
n−1 ) of the states of all replicas is

called the object’s configuration. A state is computed from the pre-
vious state by a method execution, which can be either an update
or a merge. We have ski = sk−1

i ◦ fk
i (a) where fk

i (a) is the k-th
method execution at replica i. An update is an external operation
on the data structure. A merge is an operation between two replicas

10 When r = a or r′ = a′ then a× r′ ∪ r× a′ = a× a′, and when r ⊂ a
and r′ ⊂ a′ then a× r′ ∪ r × a′ ⊂ a× a′.
11 See chapter 4 of [34] for a detailed presentation of deterministic dataflow.
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that transfers state from one to another. A method execution that
is an update is denoted uk

i (a) (it updates replica i with argument
a). A method execution that is a merge is denoted mk

i (s
k′
i′ ) (where

i 6= i′; it merges state sk
′

i′ into replica i).

Definition 4.1. Causal order of method executions Method ex-
ecutions fk

i (a) have a causal order ≤H (H for happens before)
defined by the following three rules:

1. fk
i (a) ≤H fk′

i (a′) for all k ≤ k′ (causal order at each replica)
2. fk′

i′ (a) ≤H mk
i (s

k′
i′ ) (causal order of replica-to-replica merge)

3. fk
i (a) ≤H fk′

i′ (a
′) if there exists fk′′

i′′ (a
′′) such that fk

i (a) ≤H

fk′′
i′′ (a

′′) and fk′′
i′′ (a

′′) ≤H fk′
i′ (a

′) (transitivity)

Definition 4.2. Delivery Using causal order we define the concept
of delivery: an update uk

i (a) is delivered to a replica i at state sk
′

i′

if uk
i (a) ≤H fk′

i′ (a).

Definition 4.3. State-based CRDT A CRDT is a replicated object
that satisfies the following conditions:

• Basic structure: It consists of n replicas where each replica
has an initial state, a current state, and two methods query and
update that each executes at a single replica.
• Eventual delivery: An update delivered at some correct replica

is eventually delivered at all correct replicas.
• Termination: All method executions terminate.
• Strong Eventual Consistency (SEC): All correct replicas that

have delivered the same updates have equal state.

This definition is slightly more general than the definition of
report [32]. In that report, an additional condition is added: that
each replica will always eventually send its state to each other
replica, where it is merged using a join operation. We consider that
this condition is too strong, since there are many ways to ensure that
state is disseminated among the replicas so that eventual delivery
and strong eventual consistency are guaranteed. In its place, we
assume a weak synchronization model, Property 4.2, that is not
part of the CRDT definition, and we allow each CRDT to send the
merge messages it requires to satisfy the CRDT properties.

Theorem 4.1. Monotonic semilattice condition for CRDTs A
replicated object is a state-based CRDT instance (in short, a
CRDT instance), if the following three conditions hold:

1. The set of possible values of a state ski forms a semilattice
ordered by v.

2. Merging state s with state s′ computes the Least Upper Bound
(join) of the two states s ◦ s′.

3. The state is monotonically non-decreasing across updates: s v
s ◦ u for any update u.

We say that any CRDT instance satisfying this theorem is a mono-
tonic semilattice object.

Proof Proof is given in [32].

Definition 4.4. SEC state From the commutativity and associa-
tivity of the join operator ◦, it follows that for any execution of a
monotonic semilattice object, if updates U = {u0, ..., un−1} are
all delivered in state s, then (u0 ◦ u1 ◦ · · · ◦ un−1) v s, that is, s
is an inflation of the join of all updates in U . It is not necessarily
equal since other updates may have occurred during the execution.
We call (u0 ◦ u1 ◦ · · · ◦ un−1) the SEC state of updates U .

4.2 Formal Definition of a Lasp Process
We provide a formal definition of a Lasp process.

Definition 4.5. Monotonicm-ary function Given anm-ary func-
tion f between states such that s = f(s0, s1, · · · , sm−1). Then
f is a monotonic function if ∀i : si v s′i ⇒ f(· · · , si, · · · ) v
f(· · · , s′i, · · · ).
Definition 4.6. Lasp process A Lasp process is a pair of a se-
quence of m CRDT instances and one monotonic m-ary function
f , written as ([C0, · · · , Cm−1], f). The process defines its output
as n states where each state is the result of applying f on the cor-
responding replicas of the input CRDTs.

4.3 System Properties
The following properties are needed to prove the fundamental the-
orem.

Property 4.1. Fault model and repair We assume the following
three conditions:

• Crash-stop failures: replicas fail by crashing and any replica
may fail at any time.
• Anti-entropy: after every crash, a fresh replica is eventually

created with state copied from any correct replica.
• Correctness: at least one replica is correct at any instant.

The first condition is imposed by the environment. The second
condition is the repair action done by every CRDT when one of its
replicas crashes. The third condition is what must hold globally for
the CRDT to continue operating correctly.

Property 4.2. Weak synchronization For any execution of a
CRDT instance, it is always true that eventually every replica will
successfully send a message to each other replica.12

Property 4.3. Determinism Given two executions of a CRDT in-
stance with the same sequence of updates but a different merge
schedule, i.e., a different sequence of replica-to-replica communi-
cation, replicas in the first execution that have delivered the same
updates as replicas in the second execution have equal state.

Since we intend Lasp programming to be similar to functional
programming, it is important that computations are deterministic.
We remark that SEC by itself is not enough to guarantee that; we
provide a simple counterexample with the OR-Set:

Assume that replica A (RA) does an add(1) followed by a
remove(1) and replica B (RB) does an add(1). When all replicas
have delivered these three updates, the state of the OR-Set will
either contain 1 or not contain 1. It will not contain 1 if the second
add(1) is in the causal history of the remove(1). In the other case,
it will contain 1. Both situations are possible depending on whether
or not the merge schedule communicates the state of replica B
to replica A after its add(1) and before the remove(1). Figure 5
illustrates this scenario.

Therefore, to correctly use an OR-Set in Lasp, it is important
to impose conditions that ensure determinism. The following two
conditions are sufficient to guarantee determinism for all merge
schedules:

• A remove(v) is only allowed if an add(v) with the same value
has been done previously at the same replica.
• An add(v) with the same value of v may not be done at two

different replicas.

4.4 Lemmas
Lemma 4.2. Eventual delivery for faulty execution Each update
in a CRDT instance execution that satisfies Property 4.1 and Prop-
erty 4.2, and for which the messages in Property 4.2 are delivered

12 The content of this message depends on the definition of the CRDT.
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RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}

(1, {b}, {})

{1}
(1, {a, b}, {a})

{}

(1, {a}, {a})

RA {1}

(1, {a}, {})

{}
(1, {a, b}, {a, b})

RB {1}

(1, {b}, {})

{}

(1, {a, b}, {a, b})

{}

(1, {a, b}, {a, b})

add(1) remove(1)

add(1)

add(1)

add(1) remove(1)

Figure 5: Example of nondeterminism introduced by different
replica-to-replica merge schedules. In the top example, merging after
the remove results in the item remaining in the set, where merging
before the remove results in the item being removed.

according to a continuous probability distribution is eventually de-
livered at all replicas or at no replicas, with probability 1.

Proof According to Property 4.1, a replica may crash and be
replaced by a new replica with state copied from any live replica. In
any configuration of a CRDT execution, there will be m ≤ n live
replicas of whichm′ ≤ m have delivered the update. Initially when
the update is done,m′ = 1. Crash of a replica that has delivered the
update will decrease m′. Replica-to-replica communication will
increase m′ if done from a replica that has delivered the update to
a replica that has not. Otherwise it will not affectm′. As the CRDT
instance continues its execution, Property 4.1 implies that one of
two situations will eventually happen: either all live replicas deliver
the update, or no live replicas deliver the update. Once one of these
situations happens, the third condition of Property 4.1 ensures it
will continue indefinitely.

The continuous probability distribution ensures that all infi-
nite non-converging executions have probability zero. For example,
given three replicas RA, RB , RC , and only RC has delivered. It is
possible that RA crashes just after RC delivers to it, followed by
a new replica RA′ created from RB . This can repeat indefinitely
while satisfying Property 4.1 and Property 4.2. With a continuous
probability distribution, each repetition multiplies the probability
by a number less than 1, so the infinite execution has probability
zero.

Definition 4.7. Compatibility Given a CRDT instance execution
and a finite set U of updates in this execution. We say that a state is
compatible with U in the CRDT execution if it consists of the join
of all updates in U inflated with any subset of the other updates
occurring before the state.

Compatibility makes precise the notion that all replicas reach
the same state if no other updates occur (SEC) but that other
updates might occur in the meantime. All the replica states are not
necessarily the same, but they are all inflations of the SEC state.

Lemma 4.3. Reduction of CRDT execution to a single state
execution For any CRDT instance execution, there exists a single
state execution such that any finite set U of updates from the CRDT

execution is eventually delivered to the single state execution and
gives a state that is compatible with U in the CRDT execution.

Proof Define a single state execution whose updates are a topo-
logical sort of the updates in the CRDT execution that respects the
causal order ≤H of these updates. The resulting execution satisfies
all four properties of Definition 4.3. In particular, for eventual de-
livery, it is clear that the single state execution eventually delivers
all updates in U . All other updates occurring before this state are
either causally before or concurrent with an update in U .

Lemma 4.4. Reduction of Lasp process to a CRDT execution A
Lasp process behaves as if it were a single CRDT instance with n
replicas. Each replica state consists of an (m+1)-vector of the m
states of the input CRDT instances and the corresponding state of
the output as defined by f applied to the m input states.

Proof The execution of the Lasp process satisfies all four proper-
ties of Definition 4.3. In particular, for strong eventual consistency
is clear that each CRDT instance will eventually deliver its updates
to all its replicas, resulting in a state compatible with these updates.
When this happens for all CRDT instances, then all n replicas of
the output state will be equal.

4.5 Fundamental Theorem
We present the fundamental theorem of Lasp.

Definition 4.8. Simple Lasp program A simple Lasp program
consists of either:

• A single CRDT instance, or
• A Lasp process with m inputs that are simple Lasp programs

and one output CRDT instance.

Theorem 4.5. A simple Lasp program can be reduced to a single
state execution.

Proof This is straightforward to prove by induction. We construct
the program in steps starting from single CRDTs. By Lemma 4.3,
a single CRDT instance can be reduced to a single state execution.
For each Lasp process, we replace it by a single CRDT instance
whose updates are the updates of all its input CRDT instances. By
Lemma 4.4, this is correct. We continue until we have constructed
the whole program. By Lemma 4.2, if there are faults then the worst
that can happen is that some updates are ignored.

5. Implementation
Our prototype of Lasp is implemented as an Erlang library. We
leverage the riak dt [2] library from Basho Technologies, Inc.,
which provides an implementation of state-based CRDTs in Erlang.

5.1 Distribution
Lasp distributes data using the Riak Core distributed systems
framework [22], which is based on the Dynamo system [18].

Riak Core The Riak Core library provides a framework for build-
ing applications in the style of the original Dynamo system. Riak
Core provides library functions for cluster management, dynamic
membership and failure detection.

Dynamo-style Partitioning and Hashing Lasp uses Dynamo-
style partitioning of CRDTs: consistent hashing and hash-space
partitioning are used to distribute copies of CRDTs across nodes in
a cluster to ensure high availability and fault tolerance. Replication
of each CRDT is performed between adjacent nodes in a cluster.
While the partitioning mechanism and implementation is nuanced,
it is sufficient to realize the collection of CRDTs as a series of
disjoint replica sets, of which the data is sharded across, with full
replication between the nodes in any given replica set.
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Anti-Entropy Protocol We provide an active anti-entropy proto-
col built on top of Riak Core that is responsible for ensuring all
replicas are up-to-date. Periodically, a process is used to notify
replicas that contain CRDT replicas with the value of a CRDT from
a neighboring replica.13

Quorum System Operations In Section 4, we outline the three
properties of our system: crash-stop failures, anti-entropy, and cor-
rectness. While these properties are sufficient to ensure confluence
of computations, they do not guarantee that all updates will be ob-
served if a given replica of a CRDT fails before communicating its
state to a peer replica. Therefore, to guarantee safety and be tol-
erant to failures, both read and update operations are performed
against a quorum of replicas. This ensures fault tolerance: by per-
forming read and write operations against a majority, the system
is tolerant to failures. The system remains safe and does not make
progress when the majority is not available. Additionally, quorum
operations can be used to increase liveness in the system: by writ-
ing back the merged value of the majority, we can passively repair
objects during normal system operation, improving anti-entropy.14

Replication and Execution of Operations Given replication
of the objects themselves, to ensure fault-tolerance and high-
availability, our functional programming operations and set-theoretic
operations must be replicated as well. To achieve this, quorum
replication is used to contact a majority of replicas near the out-
put CRDT, which are responsible for reading the input CRDT and
performing the transformation.

Given the map example in Figure 4, we spawn processes at
a majority of the output CRDT replicas, S2, which read from the
input replicas of S1.

To ensure forward progress of these computations, each of our
operations uses the strict version of the monotonic read operation
to prevent from executing over stale values when talking to replicas
which are out-of-date. In the map example, the transformation
is performed for a given observation in the stream of updates to
variable S1 with the output written into the stream for variable S2,
at which the process tail-recursively executes and wait to observe
a causally greater value than the previously observed S1 before
proceeding. This prevents duplication of already computed work
and ensure forward progress at each replica.

Additionally, we can apply read repair and anti-entropy tech-
niques to repair the value of S2 if it falls very far behind instead of
relying on applying operations from S1 in order.

6. Evaluation
In this section, we look at two applications that can be implemented
with Lasp.

6.1 Advertisement Counter
One of the use cases for our model is supporting clients that need
to operate without connectivity. For example, imagine a provider of
mobile games that sells advertisement space within their games.

In this example, the correctness criteria are twofold:

• Clients will go offline: consider mobile devices such as cellular
phones that experience periods without connectivity. When the
client is offline, advertisements should still be displayable.
• Advertisements need to be displayed a minimum number of

times. Additional impressions are not problematic.

13 We plan to design an optimized version, similar to the Merkle tree based
approach in [18]; our current protocol is sufficient to ensure progress.
14 In [18], this process is referred to as read repair.

Figure 6 presents one design for an eventually consistent adver-
tisement counter written in Lasp. In this example, squares repre-
sent primitive CRDTs and circles represent CRDTs that are main-
tained using Lasp operations. Additionally, Lasp operations are
represented as diamonds and edges represent the monotonic flow
of information.

Our advertisement counter operates as follows:

• Advertisement counters are grouped by vendor.
• All advertisement groups are combined into one list of adver-

tisements using a union operation.
• Advertisements are joined with active “contracts” into a list of

displayable advertisements using both the product and filter
operations.
• Each client selects an advertisement to display from the list of

active advertisements.
• For each advertisement displayed, each client updates its local

copy of the advertisement counter.
• Periodically, advertisement counters are merged upstream.
• When a counter hits at least 50,000 advertisement impressions,

the advertisement is “disabled” by removing it from the list of
advertisements.

The implementation of this advertisement counter is completely
monotonic and synchronization-free. Adding and removing ads,
adding and removing contracts, and disabling ads when their con-
tractual number of views is achieved are all modeled as the mono-
tonic growth of state in CRDTs connected by active processes.
Programmer-visible nonmonotonicity is represented by monotonic
metadata in the CRDTs.

The full implementation of the advertisement counter is avail-
able in the Lasp source code repository and consists of 213 LOC.
In this example, transparent distribution and failure handling is sup-
ported by the runtime environment, and not exposed to the devel-
oper. For brevity, we provide only two code samples: the adver-
tisement counter “server” process, that is responsible for disable
advertisements when their threshold is reached, and example use
of the product and filter operations used for composing the adver-
tisements with their contracts.

Figure 7 provides an example of the advertisement counters
server process: this process is responsible for performing a block-
ing read on each counter that will disable the counter by removing
it from the set once the threshold is reached. One server is launched
per counter to manage its lifecycle.

Figure 8 provides an example of the advertisement counters
dataflow: both of the product and filter operations spawn pro-
cesses that continuously compute the composition of both the set
of advertisements and the set of counters as each data structure in-
dependently evolves.

6.2 BloomL Replicated Key-Value Store
We provide an example of a replicated key-value store (KVS)
similar to the key-value store example presented by Conway et al.
[15]. In this example, we show how our model supports writing this
replica in a easy to reason about functional manner.

Our key-value store is a simple recursive function that receives
three types of messages from clients: get, put, and remove.

• get: Retrieve a value from the KVS by name.
• put: Store a value in the KVS by name, computing the join of

the new value and the current value.
• remove: Remove observed values in the KVS by key.
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Figure 6: Eventually consistent advertisement counter. The dotted line represents the monotonic flow of information for one counter.

1 %% @doc Server for the advertisement counter.
2 server({#ad{counter=Counter}=Ad, _}, Ads) ->
3 %% Blocking monotonic read for 50,000
4 {ok, _} = lasp:read(Counter, 50000),
5

6 %% Remove the advertisement.
7 {ok, _} = lasp:update(Ads, {remove, Ad}, Ad),
8

9 lager:info("Removing ad: ~p", [Ad]).

Figure 7: Example use of the monotonic read operation in the adver-
tisement counter application. A process is spawned that blocks until
the advertisement counter reaches 50,000 impressions, after which it
removes itself from the list of advertisements.

1 %% Compute the Cartesian product of both
2 %% ads and contracts.
3 {ok, AdsContracts} = lasp:declare(?SET),
4 ok = lasp:product(Ads, Contracts, AdsContracts),
5

6 %% Filter items by join.
7 {ok, AdsWithContracts} = lasp:declare(?SET),
8 FilterFun = fun({#ad{id=Id1},
9 #contract{id=Id2}}) ->

10 Id1 =:= Id2
11 end,
12 ok = lasp:filter(AdsContracts,
13 FilterFun,
14 AdsWithContracts),

Figure 8: Example use of dataflow operations in the advertisement
counter application. These operations together compute a join be-
tween a set of advertisements and a set of counters to compute a list
of displayable advertisements.

Figure 9 contains the code for a single server replica. A
riak dt map, a composable, convergent map, [13] is used for mod-
eling the store. Given this data structure supports the composition
of state-based CRDTs, we assume the values for all keys will be
mergeable given the lattice defined by the data type stored.

In our example, we use a simple recursive process for modeling
the key-value store. This process is responsible for responding

1 receiver(Map, ReplicaId) ->
2 receive
3 {get, Key, Client} ->
4 {ok, {_, MapValue0, _}} = lasp:read(Map),
5 MapValue = riak_dt_map:value(MapValue0),
6 case orddict:find(Key, MapValue) of
7 error ->
8 Client ! {ok, not_found};
9 Value ->

10 Client ! {ok, Value}
11 end,
12 receiver(Map, ReplicaId);
13 {put, Key, Value, Client} ->
14 {ok, _} = lasp:update(Map,
15 {update,
16 [{update, Key,
17 {add, Value}}]},
18 ReplicaId),
19 Client ! ok,
20 receiver(Map, ReplicaId);
21 {remove, Key, Client} ->
22 {ok, _} = lasp:update(Map,
23 {update,
24 [{remove, Key}]},
25 ReplicaId),
26 Client ! ok,
27 receiver(Map, ReplicaId)
28 end.

Figure 9: Simple replicated key-value store in Lasp. This tail-
recursive process is responsible for receiving messages from client
processes, and processes them in serial order.

to both get and put messages: when a message is received the
appropriate action is performed on the given key. When a put
message arrives, the map is updated by performing two actions:
first, merging the current value with the provided value in the map,
second, merging the updated map back into the variable store with
the new map. This operation is done atomically by Lasp using the
update operation. When a get message arrives, we return the current
value from the map for the provided key. Multiple instances of the
replicated KVS can merge state by periodic exchange of their maps.

We improve on the BloomL KVS by supporting concurrent re-
moval operations: removals observed at a replica remove all ob-
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served values for a key while concurrent additions for the same key
win against concurrent removals. Lasp’s programming model re-
moves the restrictions placed on lattices having external monotonic
behavior by using CRDTs as the primary programming abstraction,
while additionally providing a familiar functional programming se-
mantics to simplify distributed programming.

7. Related Work
In the following section, we identify related work.

7.1 Distributed Oz
Distributed Oz [19, 34] provides an extension of the Oz program-
ming model allowing for asynchronous communication and mobile
processing. Distributed Oz formalizes this by extending the Oz cen-
tralized execution semantics with semantics for distributed execu-
tion. Distributed Oz has a functional core that performs distributed
unification over rational trees [35]. For unifications without con-
flicting bindings, this satisfies the definition of a CRDT.

Lasp’s use of CRDTs solves the problem of conflicting bind-
ings: for each type of CRDT, there is always a merge function that
can resolve concurrent operations in a deterministic manner. In ad-
dition, Lasp provides deterministic dataflow over general CRDTs,
whereas Distributed Oz provides deterministic dataflow over just
one CRDT, namely rational trees. Finally, Lasp uses metadata com-
putation to support nonmonotonic operations in a functional set-
ting.

7.2 FlowPools
FlowPools [30] provide a lock-free deterministic concurrent dataflow
abstraction for the Scala programming language. FlowPools are es-
sentially a lock-free collection abstraction that support a concurrent
append operation and a set of combinators and higher-order opera-
tions. FlowPools are designed for multi-threaded computation, not
distributed computation.

While higher-order operations such as foreach and aggregate
function similarly to the map and fold operations in Lasp, namely
they execute once for each element that will eventually exist in the
FlowPool, these operations are somewhat limited. Each FlowPool
can only be appended to, and each element is single-assignment.
Computations using the aggregate operation require that the Flow-
Pool be sealed before the result of the aggregation is realized.

7.3 Derflow and DerflowL

Derflow and DerflowL are direct precursors to Lasp. Derflow [12]
defines a fault-tolerant single-assignment data store. It implements
deterministic dataflow programming [34] on the Dynamo-inspired,
Riak Core distributed systems framework. [18, 22]

DerflowL [27] extends Derflow to join-semilattices. DerflowL
relies on user-specified composition of CRDTs. While this model
is sufficient for composition of less complex CRDTs, it fails to
scale to the more complex and efficient CRDTs since it requires
the programmer to explicitly handle the composition of metadata.

7.4 BloomL

BloomL [15] provides Datalog-style operations over monotoni-
cally growing lattices in a distributed environment. Applications
in BloomL can be analyzed to identify locations where nonmono-
tonic operations occur, where coordination can be used to enforce
order. Differences in the programming abstraction notwithstanding,
we highlight two differences between BloomL and Lasp:

Retraction of Information Retraction of information in BloomL

is nonmonotonic, and therefore not confluent. By using composi-
tion of OR-Sets, Lasp can offer an eventually consistent (mono-

tonic and confluent) mechanism for the retraction of information,
but can not guarantee when the update might be visible.

Sealing Lattices used by the BloomL system lack causal informa-
tion, which places the requirement on monotone functions to, once
satisfied, freeze, or seal, their values. [7]

For instance, consider the case of a monotonic mapping between
two booleans, a to b: once a becomes true, b becomes true. Once the
condition is met in a, and b is set to true; the property is considered
“satisfied” and can no longer become “unsatisfied”. This prevents
the situation where an earlier version of an update is delivered to the
system and prevents the condition from observing nonmonotonic
behavior. Lasp can detect these scenarios using metadata in the
form of logical clocks which can be tracked through morphisms,
preventing an earlier update from causing the regression of the
value.

7.5 LVars
LVars [24] formalizes lattice variables for use in parallel computa-
tions in single machine settings that enforce determinism. While
LVars shares a similar functional programming core with Lasp,
each system differs in its distribution and failure modes given they
were designed to solve different problems. We also believe the
threshold read operation formalized in the LVars work is insuffi-
cient for use with advanced types of CRDTs.

We discuss both of these issues below:

Differences in Design: LVars vs. Lasp Focusing on single ma-
chine computations, LVars is aimed at running computations in par-
allel, over shared state, while preserving determinism in an other-
wise functionally pure application. Focusing on distributed compu-
tations, Lasp is aimed at running fault-tolerant applications, which
are designed to diverge and later converge deterministically, given
periods of time where processes may not be able to communicate.

Threshold Reads vs. Monotonic Reads The threshold read
operation, both originally formalized over lattices and later re-
formalized over state-based CRDTs15 [23] by Kuper and Newton,
makes two assumptions: a priori knowledge of the internal state of
a CRDT to properly threshold on the value, and that the queryable
value of a CRDT is monotone.

For example, the Grow-Only Set CRDT (G-Set) observes both
of these properties: when writing a deterministic computation over
a known stream, you are able to satisfy both conditions. First, the
internal representation of the CRDT requires only storage of the
set structure itself; concurrent operations can potentially add the
same element, however, the join operation between two sets will
remove duplicates and advance the data structure in the partial
order. Second, the value of the set will always be increasing and
therefore is monotone.

However, when dealing with a design like the Observed-
Remove Set CRDT (OR-Set), which allows the repeated addition
and removal of arbitrary elements, individual operations on the data
structure must be uniquely identified for correct semantics, even if
they represent the concurrent addition of the same element at two
different replicas. This prevents the first property from being ful-
filled: a priori knowledge of the unique constant identifiers given
multiple executions of the same program under different interleav-
ings is not possible. The second property cannot be fulfilled either:
the Observed-Remove Set has a nonmonotonic query function be-
cause elements can be removed.

Lasp is designed to specifically address the two previously dis-
cussed problems: the problem of threshold reads given CRDTs
with nondeterministic internal state, and the problem of properly

15 The citation refers to these as “CvRDTs”, convergent replicated data
types, a legacy name for the more recent nomenclature, “state-based.”
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composing these data types, while preserving the internal knowl-
edge required for correct convergence.

7.6 Discretized Streams
Discretized Streams (D-Streams) [37] is a programming model for
stream processing that supports efficient parallel recovery of faults.
D-Streams realize infinite streams as a series of small immutable
batches over which deterministic computations can be done, as
typically seen in the MapReduce model. [17] The major contribu-
tion of this work is efficient parallel recovery during faults; instead
of replicating the computations of the streams or using upstream
backup, [8, 20] lost computations can be recomputed in parallel.

The model exploits the immutable nature of the individual
events in infinite streams; D-Streams assume that a batch is con-
sidered sealed at a given time and events are grouped into batches
based on when the event arrives at the ingestion point. On the other
hand, Lasp assumes that individual data structures, along with com-
positions of these data structures, will monotonically evolve over
time while preserving determinism.

7.7 Summingbird
Summingbird [11] is an open-source domain specific language for
integrating online and batch computations into a single program-
ming abstraction. Summingbird can be used to build complex DAG
workflows, where processing is performed between sources and
sinks, with the additional ability to persist both partial and final
results to a data store such as MySQL or HBase.

In enabling correct, efficient aggregation of computations, op-
erations in the “reduce” phase are restricted to commutative semi-
groups. This prevents incorrect operation in the event of network or
processing anomalies such as out-of-order message delivery.

Lasp’s primary programming abstraction is the state-based
CRDT: a convergent data structure formalized with a bounded
join-semilattice. Given a semilattice is a commutative idempotent
semigroup, and a bounded join-semilattice forms a commutative
idempotent monoid which induces a partial order using the join
operation, this allows Lasp to handle both the network anomalies
of duplicated and reordered messages, as well as to reason about
the ordering of updates to a given item.

8. Current and Future Work
In the following section, we identify current and future work.

8.1 General Concepts
Currently, Lasp is a first-order model that allows defining data
structures and operations performed on them. Future extensions
will add abstraction mechanisms and other concepts, as they are
needed by the application scenarios that we intend to implement.
The concepts will be designed according to the needs of expres-
siveness and efficiency explained in the following two sections.

8.2 Invariant Preservation
Some computations require the preservation of invariants between
sets of replicated CRDTs. One such example is the students and
teams example posed by Conway et al. [15] when discussing the
“scope problem” of CRDTs. In this scenario, removing a student
from the set of active students should also remove the student from
any teams they were participating in.

We envision a way to specify these invariants between CRDTs
as contracts: these contracts would be enforced by a mechanism at
runtime given an allowed amount of divergence. We look at two
examples of where contracts would be useful:

• In the advertisement counter example (Figure 6), clients can
locally increment their counter, and either synchronize with

the server side advertisement counter for a given advertisement
after every impression or after a given number of impressions.
How often a client chooses to synchronize is a measure of how
much we allow this counter to diverge.
• In the students and teams example, we may want to enforce

the invariant locally at each replica, but allow the system to
temporarily diverge to reduce the amount of synchronization.

We believe we can leverage recent work in contract enforce-
ment and invariant preservation in eventually consistent systems,
specifically “invariant-based programming” by Balegas et al. [9]
and Quelea by Kaki et al. [21].

8.3 Optimizations
We plan to explore optimizing the Lasp programming model
through the use of metadata reduction, reduced state propagation,
and intermediate tree elimination.

Metadata Reduction Lasp currently has limited support for the
Optimized Conflict-Free Replicated Set (ORSWOT) as described
by Bieniusa et al. [10]. This set contains a novel algorithm for
avoiding the requirement of tracking tombstones (i.e., it does not
need garbage collection of metadata). This makes it an ideal data
structure for use in production systems. This data structure is also
the basis for the convergent, conflict-free replicated map, as de-
scribed by Brown et al. [13].

Reduced State Propagation We would like to explore meth-
ods for reducing the amount of computation needed to propagate
state changes through the graph. Two such approaches for this are
Operation-based CRDTs [33], which propagate commutative op-
erations through a reliable channel instead of the full state, and
δ−state CRDTs [5], which propagate minimal state representing
the delta derived by applying the operation locally.

Distributed Intermediate Tree Elimination Computations in
Lasp are formed using a very small subset of a functional language:
this results in very large tree structures, where the intermediate
computations might not be necessary. This is a side effect of the
functional programming style. We imagine that techniques such as
Wadler’s “deforestation” can be used to eliminate these structures
in a distributed fashion for more efficient computation, resulting in
less network communication. [36]

9. Conclusions
We introduced the Lasp programming model and motivated its use
for large-scale computation over replicated data. Our future plans
for Lasp include extending it to become a full-fledged language and
system, identifying optimizations for more efficient state propaga-
tion, exploring stronger consistency models, and optimizing distri-
bution and replica placement for better fault tolerance and reduced
latency. We also plan to evaluate the Lasp system and to test our
hypothesis that Lasp’s weak synchronization model is well-suited
for scalable and high-performance applications, in particular in set-
tings with intermittent connectivity such as mobile applications and
“Internet of Things”. Our ultimate goal is for Lasp to become a
general purpose language for building large-scale distributed appli-
cations in which synchronization is used as little as possible.
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