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1 Proposed System

1.1 Abstract

Given the nature of large-scale “Internet of Things” [1] and mobile applications1,
it is impractical to assume that the traditional client-server architecture will be
able to scale the amount of data generated at the edge.

The traditional model for edge computing focuses around client-server inter-
actions: clients located at the edge either generate large amounts of immutable
data or mutate replicated shared state and periodically perform synchroniza-
tion of this state with the server. Two different approaches exist here: either
the clients at the edge stream data back to a central data center representing
a time series of mutations for a given data object, or the clients periodically
synchronize their state with either the client or the server storing the “source
of truth” for a given data item. Each of these approaches have their own set of
drawbacks.

In the stream-based approach, clients generate streams of events that must
be consumed by a central data center for processing. These event streams
typically require the delivery of all events in causal order, to the central data
center in order to guarantee the “correctness” of computations using that data as
input. [3, 4] This technique requires enough computational power for consuming
all values across all streams for all connected devices, and enough bandwidth
to support the transmission and consumption of these streams. This technique
also requires that devices remain connected to facilitate the transmission of these
streams, which is a challenging task given the cost of operating the antenna to
available power on the units.

In the alternative approach, either clients or servers store the “source of
truth” for each data item. Mutations are performed locally at each client, and
state is periodically synchronized with the server. This is the typical approach
taken by many web and mobile applications [5], where a majority of the com-
putation is performed at the client. While this approach is correct when shared
state is minimized, if clients can concurrency act on replicated copies of this
state, concurrency control becomes a problem. In the event of concurrent oper-
ations to shared state, most of these systems need to resort to some method of
arbitration: for instance, with two conflicting copies of the same object resulting
from concurrent operations by two clients, we may choose the “winning” copy
of the data item based on temporal time.

Both of these approaches result in two fundamental challenges for the de-
veloper of distributed applications: distribution and nondeterminism. In-
herent in distributed computation, the application developer needs to explic-
itly decide where to place the “source of truth” for each data item and where
that data should be replicated based on where computations involving it occur.
Given replicated data is essential to fault-tolerance and coordinating changes
to replicated data reduces availability of systems, application developers must
decide what “consistency model” needs to be used for each type of computa-
tion: weaker models allow the system to make progress when only part of the

1Rovio, developer of the popular “Angry Birds” game franchise reported that during the
month of December 2012 they had 263 million active users. This does not account for users
who play the game on multiple devices, which is an even larger number of devices requiring
some form of shared state in the form of statistics, metrics, or leaderboards. [2]
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system is online or partial results are available. Finally, weakening coordination
in systems ultimately results in nondeterminism given items can make progress
independent of others, leaving the application developer to deal with explicitly
reducing observable nondeterminism.

As such, one area of improvement for application developers is to provide
a programming model and language-based abstractions for dealing with the
problems of distribution and nondeterminism.

1.2 Related Work

Previous work on Conflict-Free Replicated Data Types (CRDTs) [6, 7] and the
research platform that supports them, SwiftCloud [8], presents a data abstrac-
tion supporting deterministic resolution of concurrent modifications to a single
data item. This data abstraction allows clients to track state that is periodically
synchronized with the server, while guaranteeing deterministic convergence of
replicated state once all updates are delivered to all nodes in the system. This
work has also been very successful in industry in the Riak database [9]. Twit-
ter’s Summingbird [3] system also uses similar methods to allow concurrent
processing of elements in a stream of items given the commutativity properties
that some computations observe. Work on directed diffusion [10] and digest
diffusion [11] have explored optimized models for performing aggregation of in-
formation across large-scale sensor networks.

Work on using CRDTs to build large-scale distributed computations has
been previously explored as well. Navalho et al. [12, 13] have provided specifi-
cations for building CRDTs that perform computations and present a system
designed for computing aggregates using CRDTs. Conway et al. [14] have de-
signed a programming model that combines monotonic logic and convergent
modules to support correct, coordination-free programming. Meiklejohn and
Van Roy [15, 16] have designed a programming model that use CRDTs as the
primary data abstraction for distributed computation.

1.3 Research Goals

The goal of this research is to provide a declarative way to design distributed,
fault-tolerant applications that do not contain observable nondeterminism.
These applications should be able to be placed at arbitrary locations in the
network: mobile devices, “Internet of Things” hardware, or personal computers.
Applications should be tolerant to arbitrary message delays, duplication and re-
ordering: these are first-class requirements of distributed computations over
unreliable networks. When writing these applications, developers should not
have to use traditional concurrency control or synchronization mechanisms such
as mutexes, semaphores, or monitors: the primitive operations for composition
in the language should yield “deterministic-by-construction” applications.

1.4 Description Of Work

Our goals rely on us pushing the boundaries of what can be done with minimal
amounts of synchronization, given the cost of performing synchronization across
a large number of geographically distributed clients.

We break our work up into several phases:
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1.4.1 Functional Programming Language

We continue to expand our previous work on Lasp [15, 16], a functional pro-
gramming language build using CRDTs as the primary data abstraction. We
continue to extend our Lasp work to operate over richer types of data struc-
tures: for example, sets that can contain only a bounded number of elements
efficiently and optimized set representations that generate less garbage. We
grow the language into a higher-order language, and realize several of our ex-
ample use cases as Lasp programs that live fully within the language and do not
rely on components from the language hosting it (such as Erlang, in the case of
our original prototypical implementation). We investigate methods for invari-
ant preservation between two data items and how to write correct applications
while minimizing coordination as much as possible.

1.4.2 Distributed Runtime

We explore optimized methods of distribution for Lasp applications. We in-
vestigate methods for generating the most optimal distribution for applications
given an example program. For example, given a user application and require-
ments for placement for the given data items, can the system automatically
derive the most optimum placement for the remainder of the data items given
the requirements of efficiency and fault-tolerance. We explore how to efficiently
and correctly aggregate information in applications containing a large number
of clients, such as “Internet of Things” style sensor networks and mobile appli-
cations running on smartphones.

1.4.3 Evaluation

We evaluate different models of distribution for various Lasp applications with
example use cases from industry partners such as Rovio Entertainment, Basho
Technologies and Machine Zone. We attempt to identify where the declara-
tive functional programming abstraction breaks down: are there cases where
it is too impractical to derive an optimal distribution strategy for an applica-
tion without the application developer explicitly programming in the required
constraints? We evaluate the network scalability of composed CRDTs in large-
scale geographically distributed applications. We identify the bounds of what
types of applications can be developed without application developer specified
coordination mechanisms.
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